Does Fluid Interaction Affect Regularity in the Three-Dimensional Keller–Segel System with Saturated Sensitivity?

被引:0
作者
Michael Winkler
机构
[1] Universität Paderborn,Institut für Mathematik
来源
Journal of Mathematical Fluid Mechanics | 2018年 / 20卷
关键词
Chemotaxis; Stokes; Boundedness; Maximal Sobolev regularity; 35B65 (primary); 35Q35; 35Q92; 92C17 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
A class of Keller–Segel–Stokes systems generalizing the prototype nt+u·∇n=Δn-∇·n(n+1)-α∇c,ct+u·∇c=Δc-c+n,ut+∇P=Δu+n∇ϕ+f(x,t),∇·u=0,(⋆)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} n_t + u\cdot \nabla n = \Delta n - \nabla \cdot \left( n(n+1)^{-\alpha }\nabla c\right) , \\ c_t + u\cdot \nabla c = \Delta c-c+n, \\ u_t +\nabla P = \Delta u + n \nabla \phi + f(x,t), \quad \nabla \cdot u =0, \end{array} \right. \qquad \qquad (\star ) \end{aligned}$$\end{document}is considered in a bounded domain Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^3$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} and f are given sufficiently smooth functions such that f is bounded in Ω×(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \times (0,\infty )$$\end{document}. It is shown that under the condition that α>13,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \alpha >\frac{1}{3}, \end{aligned}$$\end{document}for all sufficiently regular initial data a corresponding Neumann–Neumann–Dirichlet initial-boundary value problem possesses a global bounded classical solution. This extends previous findings asserting a similar conclusion only under the stronger assumption α>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >\frac{1}{2}$$\end{document}. In view of known results on the existence of exploding solutions when α<13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <\frac{1}{3}$$\end{document}, this indicates that with regard to the occurrence of blow-up the criticality of the decay rate 13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{3}$$\end{document}, as previously found for the fluid-free counterpart of (⋆\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\star $$\end{document}), remains essentially unaffected by fluid interaction of the type considered here.
引用
收藏
页码:1889 / 1909
页数:20
相关论文
共 79 条
  • [1] Amann H(1989)Dynamic theory of quasilinear parabolic systems III. Global existence Math. Z. 202 219-250
  • [2] Cao X(2016)Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities Calc. Var. Part. Differ. Equ. 55 107-1235
  • [3] Lankeit J(2014)Global existence and temporal decay in Keller–Segel models coupled to fluid equations Commun. Partial Differ. Equ. 39 1205-2113
  • [4] Chae M(2015)New critical exponents in a fully parabolic quasilinear Keller–Segel and applications to volume filling models J. Differ. Equ. 258 2080-1453
  • [5] Kang K(2010)Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior Discrete Contin. Dyn. Syst. A 28 1437-1673
  • [6] Lee J(2010)Global solutions to the coupled chemotaxis-fluid equations Commun. Partial Differ. Equ. 35 1635-126
  • [7] Cieślak T(2012)A note on global existence for the Chemotaxis Stokes model with nonlinear diffusion Int. Math. Res. Notices 2012 20-700
  • [8] Stinner C(2015)Reaction terms avoiding aggregation in slow fluids Nonlinear Anal. Real World Appl. 21 110-89
  • [9] DiFrancesco M(1977)An J. Fac. Sci. Univ. Tokyo 24 685-212
  • [10] Lorz A(1981) theorem of the Helmholtz decomposition of vector fields Proc. Jpn. Acad. Ser. 2 85-94