Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests

被引:2
|
作者
Del Barrio E. [1 ]
Cuesta-Albertos J.A. [2 ]
Matrán C. [1 ,3 ]
机构
[1] Depto. Estadistica Invest. Operativa, Universidad de Valladolid
[2] Depto. Matemat., Estadistica y Comp., Universidad de Cantabria
[3] Departamento de Estadística, Facultad de Ciencias, Universidad de Valladolid
关键词
Correlation tests; Cramér-von Mises; Empirical and quantile processes; Goodness-of-fit; Kolmogorov-Smirnov; Shapiro-Wilk; Strong approximations; Wasserstein distance;
D O I
10.1007/BF02595852
中图分类号
学科分类号
摘要
This paper analyzes the evolution of the asymptotic theory of goodness-of-fit tests. We emphasize the parallel development of this theory and the theory of empirical and quantile processes. Our study includes the analysis of the main tests of fit based on the empirical distribution function, that is, tests of the Cramér-von Mises or Kolmogorov-Smirnov type. We pay special attention to the problem of testing fit to a location scale family. We provide a new approach, based on the Wasserstein distance, to correlation and regression tests, outlining some of their properties and explaining their limitations.
引用
收藏
页码:1 / 96
页数:95
相关论文
共 50 条
  • [21] Goodness-of-fit tests for the Cauchy distribution
    Bora H. Onen
    Dennis C. Dietz
    Vincent C. Yen
    Albert H. Moore
    Computational Statistics, 2001, 16 : 97 - 107
  • [22] Goodness-of-Fit tests for dependent data
    Ignaccolo, R
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 19 - 38
  • [23] Goodness-of-fit tests for the Cauchy distribution
    Onen, BH
    Dietz, DC
    Yen, VC
    Moore, AH
    COMPUTATIONAL STATISTICS, 2001, 16 (01) : 97 - 107
  • [24] Tests for the goodness-of-fit of the Laplace distribution
    Chen, C
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2002, 31 (01) : 159 - 174
  • [25] Goodness-of-fit procedure for gamma processes
    Verdier, Ghislain
    COMPUTATIONAL STATISTICS, 2024, 39 (05) : 2623 - 2650
  • [26] Multivariate goodness-of-fit tests based on Wasserstein distance
    Hallin, Marc
    Mordant, Gilles
    Segers, Johan
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 1328 - 1371
  • [27] Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function
    Meintanis, Simos G.
    Ngatchou-Wandji, Joseph
    Taufer, Emanuele
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 140 : 171 - 192
  • [28] Conditional Goodness-of-Fit Tests for Discrete Distributions
    Erlemann, Rasmus
    Lindqvist, Bo Henry
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (01)
  • [29] Goodness-of-fit tests for generalized Poisson distributions
    Batsidis, A.
    Milosevic, B.
    Jimenez-Gamero, M. D.
    STATISTICS, 2025, 59 (02) : 276 - 304
  • [30] The general goodness-of-fit tests for correlated data
    Zhang, Hong
    Wu, Zheyang
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167