Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests

被引:2
|
作者
Del Barrio E. [1 ]
Cuesta-Albertos J.A. [2 ]
Matrán C. [1 ,3 ]
机构
[1] Depto. Estadistica Invest. Operativa, Universidad de Valladolid
[2] Depto. Matemat., Estadistica y Comp., Universidad de Cantabria
[3] Departamento de Estadística, Facultad de Ciencias, Universidad de Valladolid
关键词
Correlation tests; Cramér-von Mises; Empirical and quantile processes; Goodness-of-fit; Kolmogorov-Smirnov; Shapiro-Wilk; Strong approximations; Wasserstein distance;
D O I
10.1007/BF02595852
中图分类号
学科分类号
摘要
This paper analyzes the evolution of the asymptotic theory of goodness-of-fit tests. We emphasize the parallel development of this theory and the theory of empirical and quantile processes. Our study includes the analysis of the main tests of fit based on the empirical distribution function, that is, tests of the Cramér-von Mises or Kolmogorov-Smirnov type. We pay special attention to the problem of testing fit to a location scale family. We provide a new approach, based on the Wasserstein distance, to correlation and regression tests, outlining some of their properties and explaining their limitations.
引用
收藏
页码:1 / 96
页数:95
相关论文
共 50 条