Korteweg-de Vries hierarchy as an asymptotic limit of the Boussinesq system

被引:0
|
作者
S. A. Kordyukova
机构
[1] Ufa State Aviation Technical University,
来源
关键词
nonlinear equation; small parameter; potentiated Korteweg-de Vries equation; Lie-Bäcklund canonical operator; multiscale method; asymptotic representation; soliton;
D O I
暂无
中图分类号
学科分类号
摘要
For the model of surface waves, we perform an asymptotic analysis with respect to a small parameter ε for large times where corrections to the approximation described by the Korteweg-de Vries equation must be taken into account. We reveal the appearance of the Korteweg-de Vries hierarchy, which ensures the construction of an asymptotic representation up to the times t ≈ ε−2, where the Korteweg-de Vries approximation becomes inapplicable.
引用
收藏
页码:250 / 259
页数:9
相关论文
共 50 条
  • [21] THE MODIFIED KORTEWEG-DE VRIES LIMIT OF THE ABLOWITZ-LADIK SYSTEM
    Killip, Rowan
    Ouyang, Zhimeng
    Visan, Monica
    Wu, Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (03) : 821 - 846
  • [22] On the Korteweg-de Vries Limit for the Fermi-Pasta-Ulam System
    Hong, Younghun
    Kwak, Chulkwang
    Yang, Changhun
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 1091 - 1145
  • [23] Asymptotic solitons of the extended Korteweg-de Vries equation
    Marchant, TR
    PHYSICAL REVIEW E, 1999, 59 (03): : 3745 - 3748
  • [25] Asymptotic solution of the extended Korteweg-de Vries equation
    Marchant, T.R.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (2-3): : 3745 - 3752
  • [26] A numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions
    Grava, T.
    Klein, C.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (23-24) : 2246 - 2264
  • [28] Higher spin Lifshitz theories and the Korteweg-de Vries hierarchy
    Beccaria, Matteo
    Gutperle, Michael
    Li, Yi
    Macorini, Guido
    PHYSICAL REVIEW D, 2015, 92 (08):
  • [29] THE KORTEWEG-DE VRIES HIERARCHY AND LONG WATER-WAVES
    KRAENKEL, RA
    MANNA, MA
    PEREIRA, JG
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (01) : 307 - 320
  • [30] On the q-deformed modified Korteweg-de Vries hierarchy
    Tu, MH
    Lee, CR
    PHYSICS LETTERS A, 2000, 266 (2-3) : 155 - 159