Can whole-tumor radiomics-based CT analysis better differentiate fat-poor angiomyolipoma from clear cell renal cell caricinoma: compared with conventional CT analysis?

被引:0
|
作者
Yanqing Ma
Fang Cao
Xiren Xu
Weijun Ma
机构
[1] People’s Hospital of Hangzhou Medical College,Department of Radiology, Zhejiang Provincial People’s Hospital
[2] Shaoxing City Keqiao District Hospital of Traditional Chinese Medicine,Department of Neurosurgery
来源
Abdominal Radiology | 2020年 / 45卷
关键词
Angiomyolipoma; Clear cell renal cell carcinoma; Radiomics; Computed tomography;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2500 / 2507
页数:7
相关论文
共 33 条
  • [1] Can whole-tumor radiomics-based CT analysis better differentiate fat-poor angiomyolipoma from clear cell renal cell caricinoma: compared with conventional CT analysis?
    Ma, Yanqing
    Cao, Fang
    Xu, Xiren
    Ma, Weijun
    ABDOMINAL RADIOLOGY, 2020, 45 (08) : 2500 - 2507
  • [2] A CT-Based Tumoral and Mini-Peritumoral Radiomics Approach: Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma
    Ma, Yanqing
    Xu, Xiren
    Pang, Peipei
    Wen, Yang
    CANCER MANAGEMENT AND RESEARCH, 2021, 13 : 1417 - 1425
  • [3] An Effective Radiomics Model for Noninvasive Discrimination of Fat-poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma
    Yang, Yi
    Zhu, Jianbing
    Zhou, Zhiyong
    Dai, Yakang
    Qian, Xusheng
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1551 - 1558
  • [4] A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma
    Nie, Pei
    Yang, Guangjie
    Wang, Zhenguang
    Yan, Lei
    Miao, Wenjie
    Hao, Dapeng
    Wu, Jie
    Zhao, Yujun
    Gong, Aidi
    Cui, Jingjing
    Jia, Yan
    Niu, Haitao
    EUROPEAN RADIOLOGY, 2020, 30 (02) : 1274 - 1284
  • [5] A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma
    Pei Nie
    Guangjie Yang
    Zhenguang Wang
    Lei Yan
    Wenjie Miao
    Dapeng Hao
    Jie Wu
    Yujun Zhao
    Aidi Gong
    Jingjing Cui
    Yan Jia
    Haitao Niu
    European Radiology, 2020, 30 : 1274 - 1284
  • [6] Review of Value of CT Texture Analysis and Machine Learning in Differentiating Fat-Poor Renal Angiomyolipoma fromRenal Cell Carcinoma
    Zhang, Yuhan
    Li, Xu
    Lv, Yang
    Gu, Xinquan
    TOMOGRAPHY, 2020, 6 (04) : 325 - 332
  • [7] Whole-Tumor Quantitative Apparent Diffusion Coefficient Histogram and Texture Analysis to Differentiation of Minimal Fat Angiomyolipoma from Clear Cell Renal Cell Carcinoma
    Li, Haojie
    Li, Anqin
    Zhu, Hui
    Hu, Yao
    Li, Jiali
    Xia, Liming
    Hu, Daoyu
    Kamel, Ihab R.
    Li, Zhen
    ACADEMIC RADIOLOGY, 2019, 26 (05) : 632 - 639
  • [8] Angiomyolipoma with Minimal Fat: Differentiation From Clear Cell Renal Cell Carcinoma and Papillary Renal Cell Carcinoma by Texture Analysis on CT Images
    Yan, Lifen
    Liu, Zaiyi
    Wang, Guangyi
    Huang, Yanqi
    Liu, Yubao
    Yu, Yuanxin
    Liang, Changhong
    ACADEMIC RADIOLOGY, 2015, 22 (09) : 1115 - 1121
  • [9] Survival analysis of clear cell renal cell carcinoma based on radiomics and deep learning features from CT images
    Lu, Zhennan
    Wu, Sijia
    Ni, Dan
    Zhou, Meng
    Wang, Tao
    Zhou, Xiaobo
    Huang, Liyu
    Yan, Yu
    MEDICINE, 2024, 103 (51)
  • [10] Quantitative Analysis of Multiphase Contrast-Enhanced CT Images: A Pilot Study of Preoperative Prediction of Fat-Poor Angiomyolipoma and Renal Cell Carcinoma
    Tang, Zhenchao
    Yu, Dexin
    Ni, Tianjiao
    Zhao, Tongtong
    Jin, Ye
    Dong, Enqing
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 214 (02) : 370 - 382