Hybrid Data-Driven Polyaxial Rock Strength Meta Model

被引:0
|
作者
Hadi Fathipour-Azar
机构
[1] Shahrood University of Technology,Faculty of Mining Engineering, Petroleum and Geophysics
来源
关键词
Rock strength model; Polyaxial stresses; Intermediate principal stress; Data-oriented process; Machine learning; Meta model;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate evaluation of polyaxial rock strength is important in the mining, geomechanics, and geoengineering fields. In this research, hybrid meta models based on the boosting additive regression (AR) combined with three machine learning (ML) methods are developed for polyaxial rock strength predicting. The ML algorithms used include Gaussian process regression (GP), random tree (RT), and M5P methods. Polyaxial tests for 14 different rocks from published literature are used for assessing these data-oriented based strength criteria. The input variables are minor principal stress and intermediate principal stress data. The modeling is evaluated by coefficient of determination (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document}), root mean square error (RMSE), and mean absolute error (MAE) statistical metrics. Results indicated that the hybrid AR-RT model performed superior prediction results (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 1, RMSE = 0 MPa, and MAE = 0 MPa) in the training phase and (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 0.987, RMSE = 29.771 MPa, and MAE = 22.517 MPa) in the testing phase. The findings of this study indicate that boosting-based additive regression algorithm enhanced developed hybrid models’ performances. Moreover, AR-RT and RT demonstrate promising results and are feasible for modeling polyaxial rock strength prediction. The RT and M5P models visualize variables and their thresholds in a simple and interpretable way. Also, sensitivity analysis indicates that input intermediate principal stress is the most effective parameter on the output polyaxial rock strength. Finally, successful implementation of the probabilistic and interpretable tree-based regressions can capture uncertainty of the model and be an alternative to complicated conventional strength criteria.
引用
收藏
页码:5993 / 6007
页数:14
相关论文
共 50 条
  • [41] Data-Driven and Mechanistic Hybrid Model for Predicting Oxygen Consumption in BOF Steelmaking
    Li, Peng
    Zhan, Dongping
    Wang, Bo
    Wang, Mingxin
    Yang, Naihui
    METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2025,
  • [42] Adaptive Radar Detection: Model-Based, Data-Driven and Hybrid Approaches
    Galitskaya, Katherina
    MICROWAVE JOURNAL, 2024, 67 (04) : 94 - 94
  • [43] Design of a Physics-Based and Data-Driven Hybrid Model for Predictive Maintenance
    Traini, Emiliano
    Bruno, Giulia
    Lombardi, Franco
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, PT V, 2021, 634 : 536 - 543
  • [44] A novel data-driven hybrid intelligent prediction model for reservoir landslide displacement
    Zai, Dezhi
    Pang, Rui
    Xu, Bin
    Liu, Jun
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (12)
  • [45] Data-driven optimization model customization
    Hewitt, Mike
    Frejinger, Emma
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (02) : 438 - 451
  • [46] Data-Driven Mathematical Model of Osteosarcoma
    Le, Trang
    Su, Sumeyye
    Kirshtein, Arkadz
    Shahriyari, Leili
    CANCERS, 2021, 13 (10)
  • [47] A Conceptual Model of Data-Driven Solutions
    Burkhardt, Daniel
    Lasi, Heiner
    AMCIS 2020 PROCEEDINGS, 2020,
  • [48] Data-Driven Model for Rockburst Prediction
    Zhao, Hongbo
    Chen, Bingrui
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [49] A Data-Driven Model for Range Sensors
    Spiess, Florian
    Strobel, Norbert
    Kaupp, Tobias
    Kounev, Samuel
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2024, 18 (02) : 205 - 222
  • [50] Data-driven Exemplar Model Selection
    Misra, Ishan
    Shrivastava, Abhinav
    Hebert, Martial
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 339 - 346