Hybrid Data-Driven Polyaxial Rock Strength Meta Model

被引:0
|
作者
Hadi Fathipour-Azar
机构
[1] Shahrood University of Technology,Faculty of Mining Engineering, Petroleum and Geophysics
来源
关键词
Rock strength model; Polyaxial stresses; Intermediate principal stress; Data-oriented process; Machine learning; Meta model;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate evaluation of polyaxial rock strength is important in the mining, geomechanics, and geoengineering fields. In this research, hybrid meta models based on the boosting additive regression (AR) combined with three machine learning (ML) methods are developed for polyaxial rock strength predicting. The ML algorithms used include Gaussian process regression (GP), random tree (RT), and M5P methods. Polyaxial tests for 14 different rocks from published literature are used for assessing these data-oriented based strength criteria. The input variables are minor principal stress and intermediate principal stress data. The modeling is evaluated by coefficient of determination (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document}), root mean square error (RMSE), and mean absolute error (MAE) statistical metrics. Results indicated that the hybrid AR-RT model performed superior prediction results (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 1, RMSE = 0 MPa, and MAE = 0 MPa) in the training phase and (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 0.987, RMSE = 29.771 MPa, and MAE = 22.517 MPa) in the testing phase. The findings of this study indicate that boosting-based additive regression algorithm enhanced developed hybrid models’ performances. Moreover, AR-RT and RT demonstrate promising results and are feasible for modeling polyaxial rock strength prediction. The RT and M5P models visualize variables and their thresholds in a simple and interpretable way. Also, sensitivity analysis indicates that input intermediate principal stress is the most effective parameter on the output polyaxial rock strength. Finally, successful implementation of the probabilistic and interpretable tree-based regressions can capture uncertainty of the model and be an alternative to complicated conventional strength criteria.
引用
收藏
页码:5993 / 6007
页数:14
相关论文
共 50 条
  • [31] A model of fake data in data-driven analysis
    Li, Xiaofan
    Whinston, Andrew B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [32] A hybrid data-driven simultaneous fault diagnosis model for air handling units
    Wu, Bingjie
    Cai, Wenjian
    Chen, Haoran
    Zhang, Xin
    ENERGY AND BUILDINGS, 2021, 245
  • [33] A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction
    Ni, Chenmin
    Fam, Pei Shan
    Marsani, Muhammad Fadhil
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [34] Physical and Data-driven Hybrid Model for Outdoor Lifetime Prediction of PV Modules
    Kaaya, Ismail
    Weiss, Karl-Anders
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 460 - 464
  • [35] Building the optimal hybrid spatial Data-Driven Model: Balancing accuracy and complexity
    Barca, Emanuele
    Caputo, Maria Clementina
    Masciale, Rita
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 139
  • [36] Daily natural gas price forecasting by a weighted hybrid data-driven model
    Wang, Jianliang
    Lei, Changran
    Guo, Meiyu
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 192
  • [37] Priori-guided and data-driven hybrid model for wind power forecasting
    Huang, Yi
    Liu, Guo-Ping
    Hu, Wenshan
    ISA TRANSACTIONS, 2023, 134 : 380 - 395
  • [38] Global solar radiation prediction: Application of novel hybrid data-driven model
    Alrashidi, Massoud
    Alrashidi, Musaed
    Rahman, Saifur
    APPLIED SOFT COMPUTING, 2021, 112
  • [39] HYBRID MODEL-BASED / DATA-DRIVEN GRAPH TRANSFORM FOR IMAGE CODING
    Bagheri, Saghar
    Do, Tam Thuc
    Cheung, Gene
    Ortega, Antonio
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3667 - 3671
  • [40] Hybrid Model-Based and Data-Driven Solution for Uncertainty Quantification at the Microscale
    Quesada-Molina J.P.
    Mariani S.
    Micro and Nanosystems, 2022, 14 (04) : 281 - 286