Hybrid Data-Driven Polyaxial Rock Strength Meta Model

被引:0
|
作者
Hadi Fathipour-Azar
机构
[1] Shahrood University of Technology,Faculty of Mining Engineering, Petroleum and Geophysics
来源
关键词
Rock strength model; Polyaxial stresses; Intermediate principal stress; Data-oriented process; Machine learning; Meta model;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate evaluation of polyaxial rock strength is important in the mining, geomechanics, and geoengineering fields. In this research, hybrid meta models based on the boosting additive regression (AR) combined with three machine learning (ML) methods are developed for polyaxial rock strength predicting. The ML algorithms used include Gaussian process regression (GP), random tree (RT), and M5P methods. Polyaxial tests for 14 different rocks from published literature are used for assessing these data-oriented based strength criteria. The input variables are minor principal stress and intermediate principal stress data. The modeling is evaluated by coefficient of determination (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document}), root mean square error (RMSE), and mean absolute error (MAE) statistical metrics. Results indicated that the hybrid AR-RT model performed superior prediction results (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 1, RMSE = 0 MPa, and MAE = 0 MPa) in the training phase and (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 0.987, RMSE = 29.771 MPa, and MAE = 22.517 MPa) in the testing phase. The findings of this study indicate that boosting-based additive regression algorithm enhanced developed hybrid models’ performances. Moreover, AR-RT and RT demonstrate promising results and are feasible for modeling polyaxial rock strength prediction. The RT and M5P models visualize variables and their thresholds in a simple and interpretable way. Also, sensitivity analysis indicates that input intermediate principal stress is the most effective parameter on the output polyaxial rock strength. Finally, successful implementation of the probabilistic and interpretable tree-based regressions can capture uncertainty of the model and be an alternative to complicated conventional strength criteria.
引用
收藏
页码:5993 / 6007
页数:14
相关论文
共 50 条
  • [21] Meta-learning for model-reference data-driven control
    Busetto, Riccardo
    Breschi, Valentina
    Formentin, Simone
    AUTOMATICA, 2025, 172
  • [22] A Data-Driven Convex Model for Hybrid Microgrid Operation With Bidirectional Converters
    Liang, Zipeng
    Dong, Zhaoyang
    Li, Chaojie
    Wu, Chenye
    Chen, Haoyong
    IEEE TRANSACTIONS ON SMART GRID, 2023, 14 (02) : 1313 - 1316
  • [23] A data-driven hysteresis model
    Ikhouane, Faycal
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (09):
  • [24] Practical Dynamic Security Region Model: A Hybrid Physical Model-Driven and Data-Driven Approach
    Ren, Junzhi
    Zeng, Yuan
    Qin, Chao
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 728 - 739
  • [25] A data-driven reflectance model
    Matusik, W
    Pfister, H
    Brand, M
    McMillan, L
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 759 - 769
  • [26] Data-driven resilient model development and feature selection for rock compressive strength prediction using machine learning and transformer techniques
    Rahaman, Md. Shakil
    Miah, Mohammad Islam
    EARTH SCIENCE INFORMATICS, 2025, 18 (03)
  • [27] Data-Driven Prediction Model for High-Strength Bolts in Composite Beams
    Li, Haolin
    Yin, Xinsheng
    Sha, Lirong
    Yang, Dongdong
    Hu, Tianyu
    BUILDINGS, 2023, 13 (11)
  • [28] Hybrid prediction model for strip width based on improved mechanism and data-driven model
    Wang, Jia-liang
    Wang, Jing-cheng
    Chen, Chao-bo
    Dang, Kang-bo
    Gao, Song
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2025, 32 (03) : 720 - 732
  • [29] Hybrid model-driven and data-driven approach for the health assessment of axial piston pumps
    Chao, Qun
    Xu, Zi
    Shao, Yuechen
    Tao, Jianfeng
    Liu, Chengliang
    Ding, Shuo
    INTERNATIONAL JOURNAL OF HYDROMECHATRONICS, 2023, 6 (01) : 76 - 92
  • [30] Hybrid data-driven models of machine translation
    Groves, Declan
    Way, Andy
    MACHINE TRANSLATION, 2005, 19 (3-4) : 301 - 323