Hybrid Data-Driven Polyaxial Rock Strength Meta Model

被引:0
作者
Hadi Fathipour-Azar
机构
[1] Shahrood University of Technology,Faculty of Mining Engineering, Petroleum and Geophysics
来源
Rock Mechanics and Rock Engineering | 2023年 / 56卷
关键词
Rock strength model; Polyaxial stresses; Intermediate principal stress; Data-oriented process; Machine learning; Meta model;
D O I
暂无
中图分类号
学科分类号
摘要
The accurate evaluation of polyaxial rock strength is important in the mining, geomechanics, and geoengineering fields. In this research, hybrid meta models based on the boosting additive regression (AR) combined with three machine learning (ML) methods are developed for polyaxial rock strength predicting. The ML algorithms used include Gaussian process regression (GP), random tree (RT), and M5P methods. Polyaxial tests for 14 different rocks from published literature are used for assessing these data-oriented based strength criteria. The input variables are minor principal stress and intermediate principal stress data. The modeling is evaluated by coefficient of determination (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document}), root mean square error (RMSE), and mean absolute error (MAE) statistical metrics. Results indicated that the hybrid AR-RT model performed superior prediction results (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 1, RMSE = 0 MPa, and MAE = 0 MPa) in the training phase and (R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} = 0.987, RMSE = 29.771 MPa, and MAE = 22.517 MPa) in the testing phase. The findings of this study indicate that boosting-based additive regression algorithm enhanced developed hybrid models’ performances. Moreover, AR-RT and RT demonstrate promising results and are feasible for modeling polyaxial rock strength prediction. The RT and M5P models visualize variables and their thresholds in a simple and interpretable way. Also, sensitivity analysis indicates that input intermediate principal stress is the most effective parameter on the output polyaxial rock strength. Finally, successful implementation of the probabilistic and interpretable tree-based regressions can capture uncertainty of the model and be an alternative to complicated conventional strength criteria.
引用
收藏
页码:5993 / 6007
页数:14
相关论文
共 117 条
[1]  
Bahrami B(2017)Quantitative comparison of fifteen rock failure criteria constrained by polyaxial test data J Petrol Sci Eng 159 564-580
[2]  
Mohsenpour S(2022)A Bayesian approach for in-situ stress prediction and uncertainty quantification for subsurface engineering Rock Mech Rock Eng 55 4531-4548
[3]  
Miri MA(2008)A quantitative comparison of six rock failure criteria Int J Rock Mech Min Sci 45 1176-1186
[4]  
Mirhaseli R(2018)Geomechanical risk assessment for subsurface fluid disposal operations Rock Mech Rock Eng 51 2265-2288
[5]  
Bao T(2000)True triaxial strength and deformability of the German continental deep drilling program (KTB) deep hole amphibolite J Geophys Res 105 18999-19013
[6]  
Burghardt J(2002)A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks Int J Rock Mech Min Sci 39 695-729
[7]  
Benz T(2021)Machine learning assisted distinct element models calibration: ANFIS, SVM, GPR, and MARS approaches Acta Geotech 13 1428-1437
[8]  
Schwab R(2021)Data-driven estimation of joint roughness coefficient (JRC) J Rock Mech Geotech Eng 17 1327-1341
[9]  
Burghardt J(2022)New interpretable shear strength criterion for rock joints Acta Geotech 55 2071-2089
[10]  
Chang C(2022)Polyaxial rock failure criteria: Insights from explainable and interpretable data driven models Rock Mech Rock Eng 81 118-3106