Nonlinear eigenvalue problems in smectics

被引:0
|
作者
V. I. Marchenko
E. R. Podolyak
机构
[1] Russian Academy of Sciences,Kapitza Institute for Physical Problems
[2] Moscow Institute of Physics and Technology,undefined
来源
Journal of Experimental and Theoretical Physics | 2010年 / 111卷
关键词
Dipole Moment; Angular Dependence; Integration Constant; Asymptotic Form; Linear Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic forms of strains in a smectic around the linear distributions of multipole force are determined. The law of a decrease in strains is specified by the indices, which are eigenvalues of nonlinear equations describing the angular dependence of the strains.
引用
收藏
页码:1050 / 1053
页数:3
相关论文
共 50 条
  • [1] Nonlinear eigenvalue problems in smectics
    Marchenko, V. I.
    Podolyak, E. R.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 111 (06) : 1050 - 1053
  • [2] Investigation of the frustration between ferroelectricity and antiferroelectricity in smectics
    A. V. Emelyanenko
    Moscow University Physics Bulletin, 2008, 63 : 396 - 400
  • [3] Waveguides coupled via apertures: Asymptotic form of the eigenvalue
    I. Yu. Popov
    Technical Physics Letters, 1999, 25 : 106 - 107
  • [4] Nonlinear optical properties of polyurea
    Yang, ML
    Sun, ZM
    Yan, GS
    ACTA PHYSICO-CHIMICA SINICA, 1999, 15 (08) : 693 - 697
  • [5] Nonlinear ac dielectric response in polyelectrolytes
    Dejardin, Jean-Louis
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING VOL 1: THEORY AND COMPUTATION: OLD PROBLEMS AND NEW CHALLENGES, 2007, 963 : 82 - 92
  • [6] Hyperpolar multichromophoric nanoassembly for molecular nonlinear optics
    Blanchard-Desce, M
    Meziane, MAA
    Rekaï, ED
    Baudin, JB
    Jullien, L
    Ledoux, I
    Zyss, J
    LINEAR AND NONLINEAR OPTICS OF ORGANIC MATERIALS II, 2002, 4798 : 163 - 172
  • [7] Some features of the thermodynamics of nonlinear classical systems
    V. A. Vshivtsev
    A. V. Prokopov
    A. V. Tatarintsev
    Theoretical and Mathematical Physics, 2000, 125 : 1568 - 1577
  • [8] Newtonian flow with nonlinear Navier boundary condition
    M. T. Matthews
    J. M. Hill
    Acta Mechanica, 2007, 191 : 195 - 217
  • [9] Stark velocity filter for nonlinear polar molecules
    Tsuji, Hidenobu
    Sekiguchi, Takao
    Mori, Tetsuya
    Momose, Takamasa
    Kanamori, Hideto
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (09)
  • [10] Some features of the thermodynamics of nonlinear classical systems
    Vshivtsev, VA
    Prokopov, AV
    Tatarintsev, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 125 (02) : 1568 - 1577