Groundstates for Planar Schrödinger-Poisson System Involving Convolution Nonlinearity and Critical Exponential Growth

被引:2
作者
Jin, Peng [1 ]
Shu, Muhua [1 ]
Wen, Lixi [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
关键词
Stein-Weiss nonlinearity; Critical exponential growth; Trudinger-Moser inequality; Ground state solutions; STEIN-WEISS INEQUALITIES; STATE SOLUTIONS; SCHRODINGER-EQUATION; EXISTENCE;
D O I
10.1007/s12220-024-01671-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with a planar Schr & ouml;dinger-Poisson system involving Stein-Weiss nonlinearity {-Delta u+V(x)u+phi u=1|x|beta(integral(RF)-F-2(u(y))|x-y|mu|y|beta dy)f(u),x is an element of R-2, Delta phi=u(2),x is an element of R-2,(0.1) and its degenerate case {-Delta u+phi u=(integral(RF)-F-2(u(y))|x-y|mu dy)f(u),x is an element of R-2, Delta phi=u(2),x is an element of R2,(0.2) where beta >= 0, 0<mu<2, 2 beta+mu<2,V is an element of C(R2,R) and f is of exponential critical growth. By combining variational methods, Stein-Weiss inequality and somedelicate analysis, we derive the existence of ground state solution for the first system.Under some mild assumptions, we introduce the Pohozaev identity of the equivalent equation of the second system and use Jeanjean's monotonicity method to achieve the existence of nontrivial solution for the second system.
引用
收藏
页数:50
相关论文
共 45 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]   Existence of positive solution for a planar Schrodinger-Poisson system with exponential growth [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (01)
[3]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[4]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
Biswas R, 2022, Arxiv, DOI [arXiv:2111.11134, 10.48550/arXiv.2111.11134, DOI 10.48550/ARXIV.2111.11134]
[7]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[8]   On a zero-mass (N, q)-Laplacian equation in RN with exponential critical growth [J].
Carvalho, J. L. ;
Figueiredo, G. M. ;
Furtado, M. F. ;
Medeiros, E. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213
[9]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[10]   Existence of extremal functions for the Stein-Weiss inequalities on the Heisenberg group [J].
Chen, Lu ;
Lu, Guozhen ;
Tao, Chunxia .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (04) :1112-1138