Self-Dual Codes Over Chain Rings

被引:0
作者
Simon Eisenbarth
Gabriele Nebe
机构
[1] RWTH Aachen,Lehrstuhl D für Mathematik
来源
Mathematics in Computer Science | 2020年 / 14卷
关键词
Self-dual codes; Chain rings; Automorphisms; Primary 94B05; Secondary 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study self-dual codes over commutative Artinian chain rings. Let R be such a ring, x be a generator of the unique maximal ideal of R and a∈N0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in {\mathbb {N}}_0 $$\end{document} maximal such that xa≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^a\ne 0$$\end{document}. A code C over R of length t is an R-submodule of the free module Rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^t$$\end{document}. Multiplying powers of x to C defines the finite chain of subcodes C⊇C(1):=Cx⊇C(2):=Cx2⊇⋯⊇C(a):=Cxa⊇{0}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C \supseteq C^{(1)} := C x \supseteq C^{(2)} := C x^2 \supseteq \dots \supseteq C^{(a)} := Cx^a \supseteq \lbrace 0 \rbrace . \end{aligned}$$\end{document}In this paper, we show that if C is a self-dual code in Rt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^t$$\end{document}, then C(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{(a)}$$\end{document} is a (hermitian) self-dual code over the residue field F=R/⟨x⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}= R / \langle x \rangle $$\end{document} if and only if C a free R-module (thus isomorphic to Rt2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\frac{t}{2}}$$\end{document}). In this case, all codes C(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{(i)}$$\end{document} are self-dual codes in suitable bilinear or Hermitian spaces Wi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_i$$\end{document} over F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} and we describe a method to construct all lifts C of a given self-dual code C(a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{(a)}$$\end{document} over F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} that are self-dual, free codes over R. We apply this technique to codes over finite fields of characteristic p admitting an automorphism whose order is a power of p. For illustration, we show that the well-known Pless Code P36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{36}$$\end{document} is the only extremal, ternary code of length 36 with an automorphism of order 3, strengthening a result of Huffman, who showed the assertion for all prime orders ≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 5$$\end{document}.
引用
收藏
页码:443 / 456
页数:13
相关论文
共 21 条
[1]  
Borello M(2015)On involutions in extremal self-dual codes and the dual distance of semi self-dual codes Finite Fields Appl. 33 80-89
[2]  
Nebe G(2013)Automorphisms of order IEEE Trans. Inform. Theory 59 3378-3383
[3]  
Borello M(2002) in binary self-dual extremal codes of length a multiple of 24 Des. Codes Cryptogr. 25 5-13
[4]  
Willems W(2000)On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24 m IEEE Trans. Inform. Theory 46 496-504
[5]  
Bouyuklieva S(1982)A method for constructing self-dual codes with an automorphism of order 2 Discrete Math. 38 143-156
[6]  
Bouyuklieva S(1994)On primes dividing the group order of a doubly-even (72; 36; 16) code and the group order of a quaternary (24; 12; 10) code IEEE Trans. Inform. Theory 40 301-319
[7]  
Conway JH(1982)The IEEE Trans. Inform. Theory 28 511-521
[8]  
Pless V(1992)-linearity of Kerdock, Preparata, Goethals, and related codes IEEE Trans. Inform. Theory 38 1395-1400
[9]  
Hammons AR(2013)Automorphisms of codes with applications to extremal doubly even codes of length 48 IEEE Trans. Inform. Theory 59 3384-3386
[10]  
Kumar PV(2010)On extremal self-dual ternary codes of lengths 28 to 40 Adv. Math. Commun. 4 579-596