Permutation Groups and Set-Orbits on the Power Set

被引:0
作者
Yanxiong Yan
Yong Yang
机构
[1] Southwest University,School of Mathematics and Statistics
[2] Texas State University,Department of Mathematics
关键词
Finite groups; Orbits; Permutation groups; Power set; 20B05;
D O I
暂无
中图分类号
学科分类号
摘要
A permutation group G acting on a set Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} induces a permutation group on the power set P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}(\Omega )$$\end{document} (the set of all subsets of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}). Let G be a finite permutation group of degree n and s(G) denote the number of orbits of G on P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {P}}(\Omega )$$\end{document}. It is an interesting problem to determine the lower bound inflog2s(G)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf \left( \frac{\log _2 s(G)}{n}\right) $$\end{document} over all groups G that do not contain any alternating group Aℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{A}_\ell $$\end{document} (where ℓ>t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell >t$$\end{document} for some fixed t⩾4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\geqslant 4)$$\end{document} as a composition factor. The second author obtained the answer for the case t=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=4$$\end{document} in Yang (J Algebra Appl 19:2150005, 2020). In this paper, we continue this investigation and study the cases when t⩾5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\geqslant 5$$\end{document}, and give the explicit lower bounds inflog2s(G)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf \left( \frac{\log _2 s(G)}{n}\right) $$\end{document} for each positive integer 5⩽t⩽166\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5\leqslant t\leqslant 166$$\end{document}.
引用
收藏
页码:177 / 199
页数:22
相关论文
共 11 条
  • [1] Babai L(1998)Permutation groups without exponentially many orbits on the power set J. Comb. Theory A 66 160-168
  • [2] Pyber L(1995)Set-transitive permutation groups Can. J. Math 7 35-42
  • [3] Beaumont RA(1983)Trivial set-stabilizers in finite permutation groups Can. J. Math. 35 59-67
  • [4] Peterson RP(2009)Lower bounds for the number of conjugacy classes of finite groups Math. Proc. Cambridge Philos. Soc. 147 567-577
  • [5] Gluck D(2002)On the orders of the primitive groups J. Algebra 258 631-640
  • [6] Keller TM(2011)Multiplicities of conjugacy class sizes of finite groups J. Algebra 341 250-255
  • [7] Maróti A(1997)Primitive groups with no regular orbit on the set of subsets Bull. Lond. Math. Soc. 29 697-704
  • [8] Nguyen HN(2014)Solvable permutation groups and orbits on power sets Commun. Algebra 42 2813-2820
  • [9] Seress A(2020)Permutation groups and orbits on the power set J. Algebra Appl. 19 2150005-undefined
  • [10] Yang Y(undefined)undefined undefined undefined undefined-undefined