New Runge–Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems

被引:0
作者
Ruru Hao
T. E. Simos
机构
[1] Chang’an University,School of Information Engineering
[2] King Saud University,Department of Mathematics, College of Sciences
[3] Ural Federal University,Group of Modern Computational Methods
[4] TEI of Sterea Hellas,Department of Automation Engineering
[5] Democritus University of Thrace,Section of Mathematics, Department of Civil Engineering
来源
Journal of Mathematical Chemistry | 2018年 / 56卷
关键词
Phase-lag; Derivative of the phase-lag; Initial value problems; Oscillating solution; Symmetric; Hybrid; Multistep; Schrödinger equation;
D O I
暂无
中图分类号
学科分类号
摘要
A new three-stages symmetric two-step method with improved properties is developed in this paper and for the first time in the literature. The properties of the new proposed algorithm are:is a symmetric finite difference pair,is a scheme of two-step,is an algorithm of three-stages—i.e. hybrid or Runge–Kutta type,is of tenth-algebraic order,it has vanished the phase-lag and its first, second and third derivatives,it has improved stability properties for the general problems,it is a P-stable method since it has an interval of periodicity equal to 0,∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0, \infty \right) $$\end{document}. The new proposed scheme is constructed based on the following layers:An approximation denoted on the first layer on the point xn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n-1}$$\end{document},An approximation denoted on the second layer on the point xn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n}$$\end{document} and finally,An approximation denoted on the third (final) layer on the point xn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{n+1}$$\end{document}, For the new proposed method we give a full theoretical analysis which consists of: (1) local truncation error analysis, (2) comparative local truncation error analysis, (3) stability analysis and (4) interval of periodicity analysis. The efficiency of the new proposed algorithm is tested on the approximate solution of systems of coupled differential equations arising from the Schrödinger equation.
引用
收藏
页码:3014 / 3044
页数:30
相关论文
共 239 条
  • [1] Allison AC(1970)The numerical solution of coupled differential equations arising from the Schrödinger equation J. Comput. Phys. 6 378-391
  • [2] Simos VNKTE(2017)Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies AIP Conf. Proc. 1863 560099-53
  • [3] Kovalnogov VN(2016)Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations AIP Conf. Proc. 738 480004-335
  • [4] Shevchuk IV(2015)Numerical analysis of the temperature stratification of the disperse flow AIP Conf. Proc. 1648 850033-202
  • [5] Kovalnogov VN(1998)Control of turbulent transfer in the boundary layer through applied periodic effects Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1 49-1700
  • [6] Fedorov RV(2015)Modeling and development of cooling technology of turbine engine blades Int. Rev. Mech. Eng. 9 331-205
  • [7] Generalov DA(1976)Symmetric multistep methods for periodic initial values problems J. Inst. Math. Appl. 18 189-3889
  • [8] Khakhalev YA(1990)Symmetric multistep methods for the numerical integration of planetary orbits Astron. J. 100 1694-168
  • [9] Zolotov AN(1997)A finite difference method for the numerical solution of the Schrödinger equation J. Comput. Appl. Math. 79 189-175
  • [10] Kovalnogov VN(2018)New three-stages symmetric two step method with improved properties for second order initial/boundary value problems J. Math. Chem. 236 3880-785