Dimensional Regularization and Renormalization of Non-Commutative Quantum Field Theory

被引:0
|
作者
Razvan Gurău
Adrian Tanasă
机构
[1] Université Paris XI,Laboratoire de Physique Théorique
来源
Annales Henri Poincaré | 2008年 / 9卷
关键词
Hopf Algebra; Parametric Representation; Vertex Versus; Dimensional Regularization; Root Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
Using the recently introduced parametric representation of noncommutative quantum field theory, we implement here the dimensional regularization and renormalization of the vulcanized \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi^{*4}_{4}$$\end{document} model on the Moyal space.
引用
收藏
页码:655 / 683
页数:28
相关论文
共 50 条
  • [21] Hopf algebra of non-commutative field theory
    Tanasa, Adrian
    Vignes-Tourneret, Fabien
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2008, 2 (01) : 125 - 139
  • [22] On finite 4D quantum field theory in non-commutative geometry
    Grosse, H
    Klimcik, C
    Presnajder, P
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (02) : 429 - 438
  • [23] The renormalization of non-commutative field theories in the limit of large non-commutativity
    Becchi, C
    Giusto, S
    Imbimbo, C
    NUCLEAR PHYSICS B, 2003, 664 (1-2) : 371 - 399
  • [24] Supersymmetric quantum theory, non-commutative geometry, and gravitation
    Frohlich, J
    Grandjean, O
    Recknagel, A
    SYMETRIES QUANTIQUES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 221 - 385
  • [25] Modular Theory, Non-Commutative Geometry and Quantum Gravity
    Bertozzini, Paolo
    Conti, Roberto
    Lewkeeratiyutkul, Wicharn
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6
  • [26] Quantum Mechanics: Harbinger of a Non-commutative Probability Theory?
    Hiley, B. J.
    QUANTUM INTERACTION, QI 2013, 2014, 8369 : 6 - 21
  • [27] Regularization of two-dimensional supersymmetric Yang-Mills theory via non-commutative geometry
    Valavane, K
    CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (21) : 4491 - 4513
  • [28] Background field quantization and non-commutative Maxwell theory
    Das, A
    Frenkel, J
    Pereira, SH
    Taylor, JC
    PHYSICS LETTERS B, 2003, 577 (1-2) : 76 - 82
  • [29] Non-commutative field theory on S4
    Nakayama, R
    Shimono, Y
    PROGRESS OF THEORETICAL PHYSICS, 2004, 112 (05): : 883 - 894
  • [30] Gauge fields on non-commutative spaces and renormalization
    Blaschke, Daniel N.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2014, 62 (9-10): : 820 - 824