Powerfully nilpotent groups of maximal powerful class

被引:0
作者
G. Traustason
J. Williams
机构
[1] University of Bath,Department of Mathematical Sciences
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Powerful; -group; Nilpotent; p-group; Coclass; Maximal class; 20D15; 20F40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we continue the study of powerfully nilpotent groups started in Traustason and Williams (J Algebra 522:80–100, 2019). These are powerful p-groups possessing a central series of a special kind. To each such group one can attach a powerful class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. The focus here is on powerfully nilpotent groups of maximal powerful class but these can be seen as the analogs of groups of maximal class in the class of all finite p-groups. We show that for any given positive integer r and prime p>r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>r$$\end{document}, there exists a powerfully nilpotent group of maximal powerful class and we analyse the structure of these groups. The construction uses the Lazard correspondence and thus we construct first a powerfully nilpotent Lie ring of maximal powerful class and then lift this to a corresponding group of maximal powerful class. We also develop the theory of powerfully nilpotent Lie rings that is analogous to the theory of powerfully nilpotent groups.
引用
收藏
页码:779 / 799
页数:20
相关论文
共 50 条
  • [41] The R∞-property and commensurability for nilpotent groups
    Lathouwers, Maarten
    Witdouck, Thomas
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (02) : 602 - 616
  • [42] Dominions in finitely generated nilpotent groups
    Magidin, A
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4545 - 4559
  • [43] On the nilpotent probability and supersolvability of finite groups
    Huaquan Wei
    Huilong Gu
    Jiao Li
    Liying Yang
    Monatshefte für Mathematik, 2021, 194 : 371 - 376
  • [44] Yamabe Flow On Nilpotent Lie Groups
    Shahroud Azami
    Bulletin of the Iranian Mathematical Society, 2020, 46 : 1123 - 1142
  • [45] Power graphs of all nilpotent groups
    Sayyed Heidar Jafari
    Samir Zahirović
    Journal of Algebraic Combinatorics, 2023, 58 : 611 - 622
  • [46] Power graphs of all nilpotent groups
    Jafari, Sayyed Heidar
    Zahirovic, Samir
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (03) : 611 - 622
  • [47] REMARKS ON THE VARIETAL NILPOTENT AND SOLUBLE GROUPS
    Taheri, S. Mostafa
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 13 (02): : 153 - 159
  • [48] Links, pictures and the homology of nilpotent groups
    Igusa, K
    Orr, KE
    TOPOLOGY, 2001, 40 (06) : 1125 - 1166
  • [49] On Groups Whose Maximal Cyclic Subgroups Are Maximal
    Juriaans, S. O.
    Rogerio, J. R.
    ALGEBRA COLLOQUIUM, 2010, 17 (02) : 223 - 227
  • [50] On commuting automorphisms and central automorphisms of finite 2-groups of almost maximal class
    Shahrabi, Nazila Azimi
    Malayeri, Mehri Akhavan
    RICERCHE DI MATEMATICA, 2024, 73 (03) : 1255 - 1269