Powerfully nilpotent groups of maximal powerful class

被引:0
作者
G. Traustason
J. Williams
机构
[1] University of Bath,Department of Mathematical Sciences
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Powerful; -group; Nilpotent; p-group; Coclass; Maximal class; 20D15; 20F40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we continue the study of powerfully nilpotent groups started in Traustason and Williams (J Algebra 522:80–100, 2019). These are powerful p-groups possessing a central series of a special kind. To each such group one can attach a powerful class that leads naturally to the notion of a powerful coclass and classification in terms of an ancestry tree. The focus here is on powerfully nilpotent groups of maximal powerful class but these can be seen as the analogs of groups of maximal class in the class of all finite p-groups. We show that for any given positive integer r and prime p>r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>r$$\end{document}, there exists a powerfully nilpotent group of maximal powerful class and we analyse the structure of these groups. The construction uses the Lazard correspondence and thus we construct first a powerfully nilpotent Lie ring of maximal powerful class and then lift this to a corresponding group of maximal powerful class. We also develop the theory of powerfully nilpotent Lie rings that is analogous to the theory of powerfully nilpotent groups.
引用
收藏
页码:779 / 799
页数:20
相关论文
共 50 条
  • [31] Powerful 2-Engel Groups
    Moravec, Primoz
    Traustason, Gunnar
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (11) : 4096 - 4119
  • [32] The modular group algebras of p-groups of maximal class II
    Baginski, Czeslaw
    Kurdics, Janos
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (02) : 761 - 771
  • [33] The Nilpotent Probability of Finite Groups
    Huaquan Wei
    Xuanyou Hou
    Changman Sun
    Xixi Diao
    Hui Wu
    Liying Yang
    Acta Mathematica Sinica, English Series, 2025, 41 (4) : 1238 - 1246
  • [34] Phase Retrieval for Nilpotent Groups
    Hartmut Führ
    Vignon Oussa
    Journal of Fourier Analysis and Applications, 2023, 29
  • [35] Dominions in varieties of nilpotent groups
    Magidin, A
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (03) : 1241 - 1270
  • [36] Phase Retrieval for Nilpotent Groups
    Fuehr, Hartmut
    Oussa, Vignon
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (04)
  • [37] A class of nilpotent evolution algebras
    Omirov, Bakhrom A.
    Rozikov, Utkir A.
    Victoria Velasco, M.
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (04) : 1556 - 1567
  • [38] Commuting automorphisms of finite 2-groups of almost maximal class, II
    Shahrabi, N. Azimi
    Akhavan-Malayeri, M.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (04)
  • [39] Graphs associated with nilpotent Lie algebras of maximal rank
    Díaz, E
    Fernández-Mateos, R
    Fernádez-Ternero, D
    Núñez, J
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (02) : 325 - 338
  • [40] Yamabe Flow On Nilpotent Lie Groups
    Azami, Shahroud
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 1123 - 1142