The Importance of Electrostatics and Polarization for Noncovalent Interactions: Ionic Hydrogen Bonds vs Ionic Halogen Bonds

被引:0
|
作者
Tore Brinck
André Nyberg Borrfors
机构
[1] CBH,Applied Physical Chemistry, Department of Chemistry
[2] KTH Royal Institute of Technology,undefined
来源
关键词
Hydrogen bond; Halogen bond; Electrostatic potential; Charge penetration; Intermolecular interaction;
D O I
暂无
中图分类号
学科分类号
摘要
A series of 26 hydrogen-bonded complexes between Br− and halogen, oxygen and sulfur hydrogen-bond (HB) donors is investigated at the M06-2X/6–311 + G(2df,2p) level of theory. Analysis using a model in which Br− is replaced by a point charge shows that the interaction energy (ΔEInt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}$$\end{document}) of the complexes is accurately reproduced by the scaled interaction energy with the point charge (ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}^{PC}$$\end{document}).This is demonstrated by ΔEInt=0.86ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}=0.86{\Delta E}_{Int}^{PC}$$\end{document} with a correlation coefficient, R2 =0.999. The only outlier is (Br-H-Br)−, which generally is classified as a strong charge-transfer complex with covalent character rather than a HB complex. ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}^{PC}$$\end{document} can be divided rigorously into an electrostatic contribution (ΔEESPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{ES}^{PC}$$\end{document}) and a polarization contribution (ΔEPolPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Pol}^{PC}$$\end{document}).Within the set of HB complexes investigated, the former varies between -7.2 and -32.7 kcal mol−1, whereas the latter varies between -1.6 and -11.5 kcal mol−1. Compared to our previous study of halogen-bonded (XB) complexes between Br− and C–Br XB donors, the electrostatic contribution is generally stronger and the polarization contribution is generally weaker in the HB complexes. However, for both types of bonding, the variation in interaction strength can be reproduced accurately without invoking a charge-transfer term. For the Br−···HF complex, the importance of charge penetration on the variation of the interaction energy with intermolecular distance is investigated. It is shown that the repulsive character of ΔEInt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}$$\end{document} at short distances in this complex to a large extent can be attributed to charge penetration.
引用
收藏
相关论文
共 50 条
  • [41] Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Hexachloroplatinate and Tetraclorouranylate of 3-Carboxypyridinium-Halogen Bonds and π-Interactions vs. Hydrogen Bonds
    Novikov, Anton Petrovich
    Volkov, Mikhail Alexandrovich
    Safonov, Alexey Vladimirovich
    Grigoriev, Mikhail Semenovich
    CRYSTALS, 2022, 12 (02)
  • [42] EXISTENCE OF IONIC BONDS IN DNA
    ERLANDER, SR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1976, 172 (SEP3): : 107 - 107
  • [43] Demonstrating the importance of hydrogen bonds through the absence of hydrogen bonds
    Valdés-Martínez, J
    Del Rio-Ramirez, M
    Hernández-Ortega, S
    Aakeröy, CB
    Helfrich, B
    CRYSTAL GROWTH & DESIGN, 2001, 1 (06) : 485 - 489
  • [44] Utilizing hydrogen bonds and halogen-halogen interactions in the design of uranyl hybrid materials
    Andrews, Michael B.
    Cahill, Christopher L.
    DALTON TRANSACTIONS, 2012, 41 (14) : 3911 - 3914
  • [45] IONIC CHARACTER OF CHEMICAL BONDS
    MOOSER, E
    PEARSON, WB
    NATURE, 1961, 190 (477) : 406 - &
  • [46] Strong, Localized, and Directional Hydrogen Bonds Fluidize Ionic Liquids
    Fumino, Koichi
    Wulf, Alexander
    Ludwig, Ralf
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (45) : 8731 - 8734
  • [47] Understanding the hydrogen and halogen bonds of ionic liquids in regulating ion solvation and dynamic behaviors of aqueous zinc electrolytes
    Li, Yanrui
    Su, Long
    Xu, Xinming
    Shang, Jundi
    Li, Jie
    Lu, Fei
    Zheng, Liqiang
    Gao, Xinpei
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 412
  • [48] Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties
    Miran, Muhammed Shah
    Kinoshita, Hiroshi
    Yasuda, Tomohiro
    Abu Bin, Md
    Susanz, Hasan
    Watanabe, Masayoshi
    CHEMICAL COMMUNICATIONS, 2011, 47 (47) : 12676 - 12678
  • [49] Understanding Structures and Hydrogen Bonds of Ionic Liquids at the Electronic Level
    Dong, Kun
    Song, Yuting
    Liu, Xiaomin
    Cheng, Weiguo
    Yao, Xiaoqian
    Zhang, Suojiang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (03): : 1007 - 1017
  • [50] Properties of hydrogen bonds in the protic ionic liquid ethylammonium nitrate
    Zentel, Tobias
    Kuehn, Oliver
    THEORETICAL CHEMISTRY ACCOUNTS, 2017, 136 (08)