The Importance of Electrostatics and Polarization for Noncovalent Interactions: Ionic Hydrogen Bonds vs Ionic Halogen Bonds

被引:0
|
作者
Tore Brinck
André Nyberg Borrfors
机构
[1] CBH,Applied Physical Chemistry, Department of Chemistry
[2] KTH Royal Institute of Technology,undefined
来源
关键词
Hydrogen bond; Halogen bond; Electrostatic potential; Charge penetration; Intermolecular interaction;
D O I
暂无
中图分类号
学科分类号
摘要
A series of 26 hydrogen-bonded complexes between Br− and halogen, oxygen and sulfur hydrogen-bond (HB) donors is investigated at the M06-2X/6–311 + G(2df,2p) level of theory. Analysis using a model in which Br− is replaced by a point charge shows that the interaction energy (ΔEInt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}$$\end{document}) of the complexes is accurately reproduced by the scaled interaction energy with the point charge (ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}^{PC}$$\end{document}).This is demonstrated by ΔEInt=0.86ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}=0.86{\Delta E}_{Int}^{PC}$$\end{document} with a correlation coefficient, R2 =0.999. The only outlier is (Br-H-Br)−, which generally is classified as a strong charge-transfer complex with covalent character rather than a HB complex. ΔEIntPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}^{PC}$$\end{document} can be divided rigorously into an electrostatic contribution (ΔEESPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{ES}^{PC}$$\end{document}) and a polarization contribution (ΔEPolPC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Pol}^{PC}$$\end{document}).Within the set of HB complexes investigated, the former varies between -7.2 and -32.7 kcal mol−1, whereas the latter varies between -1.6 and -11.5 kcal mol−1. Compared to our previous study of halogen-bonded (XB) complexes between Br− and C–Br XB donors, the electrostatic contribution is generally stronger and the polarization contribution is generally weaker in the HB complexes. However, for both types of bonding, the variation in interaction strength can be reproduced accurately without invoking a charge-transfer term. For the Br−···HF complex, the importance of charge penetration on the variation of the interaction energy with intermolecular distance is investigated. It is shown that the repulsive character of ΔEInt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta E}_{Int}$$\end{document} at short distances in this complex to a large extent can be attributed to charge penetration.
引用
收藏
相关论文
共 50 条
  • [21] Hydrogen bonds and ionic interactions in Guanidine/Guanidinium complexes: a computational case study
    Rozas, Isabel
    Alkorta, Ibon
    Elguero, Jose
    STRUCTURAL CHEMISTRY, 2008, 19 (06) : 923 - 933
  • [22] Role of Polarization in Halogen Bonds
    Clark, Timothy
    Murray, Jane S.
    Politzer, Peter
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2014, 67 (03) : 451 - 456
  • [23] Noncovalent interaction network of chalcogen, halogen and hydrogen bonds for supramolecular β-sheet organization
    Cao, Jinlian
    Weng, Peimin
    Qi, Yuanwei
    Lin, Kexin
    Yan, Xiaosheng
    CHEMICAL COMMUNICATIONS, 2024, 60 (11) : 1484 - 1487
  • [24] A new noncovalent force: Comparison of P ... N interaction with hydrogen and halogen bonds
    Scheiner, Steve
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (09):
  • [25] Directional Ionic Bonds
    Hutskalov, Illia
    Linden, Anthony
    Coric, Ilija
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (15) : 8291 - 8298
  • [26] POLYMERS WITH IONIC BONDS
    DANJARD, JC
    NIMERICH, C
    PINERI, M
    KAUTSCHUK GUMMI KUNSTSTOFFE, 1971, 24 (11): : 590 - &
  • [27] Ab initio characterization of halogen bonds involving molecular ionic halogen bond donors
    Tran, Khanh-An
    Riley, Kevin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [28] Designing ternary cocrystals with hydrogen bonds and halogen bonds
    Tothadi, Srinu
    Desiraju, Gautam R.
    CHEMICAL COMMUNICATIONS, 2013, 49 (71) : 7791 - 7793
  • [29] Stability of Quadruple Hydrogen Bonds in an Ionic Liquid Environment
    Li, Chenming
    Bhandary, Rajesh
    Marinow, Anja
    Bachmann, Stephanie
    Poeppler, Ann-Christin
    Binder, Wolfgang H.
    MACROMOLECULAR RAPID COMMUNICATIONS, 2024, 45 (02)
  • [30] THE DIPOLE MOMENT OF HYDROGEN FLUORIDE AND THE IONIC CHARACTER OF BONDS
    HANNAY, NB
    SMYTH, CP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1946, 68 (02) : 171 - 173