Sojourn Times of Gaussian Processes with Trend

被引:0
作者
Krzysztof Dȩbicki
Peng Liu
Zbigniew Michna
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Lausanne,Department of Actuarial Science, Faculty of Business and Economics
[3] University of Waterloo,Department of Statistics and Actuarial Science
[4] Wrocław University of Economics,Department of Mathematics and Cybernetics
来源
Journal of Theoretical Probability | 2020年 / 33卷
关键词
Cumulative Parisian ruin time; Exact asymptotics; First passage time; Gaussian process with stationary increments; Generalized Berman-type constant; Self-similar Gaussian process; Sojourn/occupation times; Primary 60G15; secondary 60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We derive exact tail asymptotics of sojourn time above the level u≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\ge 0$$\end{document}Pv(u)∫0TI(X(t)-ct>u)dt>x,x≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbb {P}} \left( v(u)\int _0^T {\mathbb {I}}(X(t)-ct>u)\text {d}t>x \right) , \quad x\ge 0, \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, where X is a Gaussian process with continuous sample paths, c is some constant, v(u) is a positive function of u and T∈(0,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\in (0,\infty ]$$\end{document}. Additionally, we analyze asymptotic distributional properties of τu(x):=inft≥0:v(u)∫0tI(X(s)-cs>u)ds>x,x≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \tau _u(x):=\inf \left\{ t\ge 0: {v(u)} \int _0^t {\mathbb {I}}(X(s)-cs>u)\text {d}s>x\right\} , \quad x \ge 0, \end{aligned}$$\end{document}as u→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\rightarrow \infty $$\end{document}, where inf∅=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\inf \emptyset =\infty $$\end{document}. The findings of this contribution are illustrated by a detailed analysis of a class of Gaussian processes with stationary increments and a family of self-similar Gaussian processes.
引用
收藏
页码:2119 / 2166
页数:47
相关论文
共 44 条
[1]  
Berman SM(1982)Sojourns and extremes of stationary processes Ann. Probab. 10 1-46
[2]  
Berman SM(1985)Sojourns above a high level for a Gaussian process with a point of maximum variance Commun. Pure Appl. Math. 38 519-528
[3]  
Berman SM(1987)Extreme sojourns of a Gaussian process with a point of maximum variance Probab. Theory Relat. Fields 74 113-124
[4]  
Akahori J(1995)Some formulae for a new type of path-dependent option Ann. Appl. Probab. 5 383-388
[5]  
Guérin H(2016)Joint distribution of a spectrally negative Lévy process and its occupation time, with step option pricing in view Adv. Appl. Probab. 48 274-297
[6]  
Renaud J-F(2017)On the distribution of cumulative Parisian ruin Insur. Math. Econ. 73 116-123
[7]  
Guérin H(2014)On pre-exit joint occupation times for spectrally negative Lévy processes Stat. Probab. Lett. 94 48-55
[8]  
Renaud J-F(2013)The joint Laplace transforms for diffusion occupation times Adv. Appl. Probab. 45 1049-1067
[9]  
Li Y(2015)Occupation times, drawdowns, and drawups for one-dimensional regular diffusions Adv. Appl. Probab. 47 210-230
[10]  
Zhou X(2014)Occupation times of intervals until first passage times for spectrally negative Lévy processes Stoch. Process. Appl. 124 1408-1435