On a Conjecture About Signed Domination in the Cartesian Product of Two Directed Cycles

被引:0
作者
Zehui Shao
Huiqin Jiang
Mustapha Chellali
Seyed Mahmoud Sheikholeslami
Marzieh Soroudi
Pu Wu
Bo Wang
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] University of Blida,LAMDA
[3] Azarbaijan Shahid Madani University,RO Laboratory, Department of Mathematics
[4] Wuhan University,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷
关键词
Signed domination number; Cartesian product; Cycle; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a finite and simple digraph with vertex set V(D). A signed dominating function (SDF) of D is a function f:V(D)⟶{-1,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\longrightarrow \{-1,1\}$$\end{document} such that f(N-[v])=∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(N^{-}[v])=\sum _{x\in N^{-}[v]}f(x)\ge 1$$\end{document} for every v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{-}[v]$$\end{document} consists of v and all vertices of D from which arcs go into v. The weight of an SDF is the sum of its function values over all vertices, and the minimum weight of an SDF of G is the signed domination number γs(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(D).$$\end{document} In this paper, we investigate the signed domination number of the Cartesian product of two directed cycles by showing that γs(Cm□Cn)=⌈m3⌉n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(C_{m}\Box C_{n})=\lceil \frac{m}{3}\rceil n$$\end{document} if n≡0(mod2m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod {2m}$$\end{document} or n≥m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge m$$\end{document} and m≡1(mod3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\equiv 1\pmod 3,$$\end{document} answering a conjecture posed in Shaheen (J Progress Res Math 6(2):770–777, 2016). Moreover, the exact value of γs(C8□Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(C_{8}\Box C_{n})$$\end{document} is also provided.
引用
收藏
页码:2541 / 2549
页数:8
相关论文
共 50 条
[21]   Bounds on locating total domination number of the Cartesian product of cycles and paths [J].
Xing, Huaming ;
Sohn, Moo Young .
INFORMATION PROCESSING LETTERS, 2015, 115 (12) :950-956
[22]   Bounds on locating-total domination number of the Cartesian product of cycles [J].
Xing, Huaming ;
Sohn, Moo Young .
ARS COMBINATORIA, 2014, 113A :139-146
[23]   Signed 2-independence of Cartesian product of directed paths [J].
Wang, Haichao ;
Kim, Hye Kyung .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (06) :1190-1201
[24]   The 3-Rainbow Domination Number of the Cartesian Product of Cycles [J].
Gao, Hong ;
Xi, Changqing ;
Yang, Yuansheng .
MATHEMATICS, 2020, 8 (01)
[25]   L(2, 1)-LABELING OF THE CARTESIAN AND STRONG PRODUCT OF TWO DIRECTED CYCLES [J].
Shao, Zehui ;
Jiang, Huiqin ;
Vesel, Aleksander .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2018, 1 (01) :49-61
[26]   The 2-rainbow domination number of Cartesian product of cycles [J].
Brezovnik, Simon ;
Poklukar, Darja Rupnik ;
Zerovnik, Janez .
ARS MATHEMATICA CONTEMPORANEA, 2025, 25 (03)
[27]   Signed Domination Number of the Directed Cylinder [J].
Wang, Haichao ;
Kim, Hye Kyung .
SYMMETRY-BASEL, 2019, 11 (12)
[28]   Signed Domination in Kronecker Product of Two Complete Graphs [J].
Zhao, Yancai ;
Shan, Erfang ;
Miao, Lianying .
UTILITAS MATHEMATICA, 2013, 91 :319-326
[29]   On L(d, 1)-Labelings of the Cartesian Product of Two Cycles [J].
Lin, Chun-Chun ;
Yan, Jing-Ho .
ARS COMBINATORIA, 2015, 122 :33-53
[30]   Certain domination numbers for Cartesian product of graphs [J].
Arulanand, S. ;
Rajan, R. Sundara ;
Prabhu, S. ;
Stephen, Sudeep .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) :1045-1058