On a Conjecture About Signed Domination in the Cartesian Product of Two Directed Cycles

被引:0
|
作者
Zehui Shao
Huiqin Jiang
Mustapha Chellali
Seyed Mahmoud Sheikholeslami
Marzieh Soroudi
Pu Wu
Bo Wang
机构
[1] Guangzhou University,Institute of Computing Science and Technology
[2] University of Blida,LAMDA
[3] Azarbaijan Shahid Madani University,RO Laboratory, Department of Mathematics
[4] Wuhan University,Department of Mathematics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷
关键词
Signed domination number; Cartesian product; Cycle; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be a finite and simple digraph with vertex set V(D). A signed dominating function (SDF) of D is a function f:V(D)⟶{-1,1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(D)\longrightarrow \{-1,1\}$$\end{document} such that f(N-[v])=∑x∈N-[v]f(x)≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(N^{-}[v])=\sum _{x\in N^{-}[v]}f(x)\ge 1$$\end{document} for every v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document}, where N-[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{-}[v]$$\end{document} consists of v and all vertices of D from which arcs go into v. The weight of an SDF is the sum of its function values over all vertices, and the minimum weight of an SDF of G is the signed domination number γs(D).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(D).$$\end{document} In this paper, we investigate the signed domination number of the Cartesian product of two directed cycles by showing that γs(Cm□Cn)=⌈m3⌉n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(C_{m}\Box C_{n})=\lceil \frac{m}{3}\rceil n$$\end{document} if n≡0(mod2m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod {2m}$$\end{document} or n≥m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge m$$\end{document} and m≡1(mod3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\equiv 1\pmod 3,$$\end{document} answering a conjecture posed in Shaheen (J Progress Res Math 6(2):770–777, 2016). Moreover, the exact value of γs(C8□Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{s}(C_{8}\Box C_{n})$$\end{document} is also provided.
引用
收藏
页码:2541 / 2549
页数:8
相关论文
共 50 条
  • [1] On a Conjecture About Signed Domination in the Cartesian Product of Two Directed Cycles
    Shao, Zehui
    Jiang, Huiqin
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    Soroudi, Marzieh
    Wu, Pu
    Wang, Bo
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A5): : 2541 - 2549
  • [2] On signed domination number of Cartesian product of directed paths
    Wang, Haichao
    Kim, Hye Kyung
    Deng, Yunping
    UTILITAS MATHEMATICA, 2018, 109 : 45 - 61
  • [3] On domination number of Cartesian product of directed cycles
    Liu, Juan
    Zhang, Xindong
    Chen, Xing
    Meng, Jixiang
    INFORMATION PROCESSING LETTERS, 2010, 110 (05) : 171 - 173
  • [4] More Results on the Domination Number of Cartesian Product of Two Directed Cycles
    Ye, Ansheng
    Miao, Fang
    Shao, Zehui
    Liu, Jia-Bao
    Zerovnik, Janez
    Repolusk, Polona
    MATHEMATICS, 2019, 7 (02)
  • [5] BBM ALGORITHM FOR SIGNED MIXED DOMINATION IN CARTESIAN PRODUCT OF CYCLES
    Gao, Hong
    Liu, Enmao
    Yang, Yuansheng
    Liu, Wei
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (04): : 1507 - 1520
  • [6] The Twin Domination Number of Cartesian Product of Directed Cycles
    Hongxia MA
    Juan LIU
    JournalofMathematicalResearchwithApplications, 2016, 36 (02) : 171 - 176
  • [7] On total domination number of Cartesian product of directed cycles
    Zhuang, Wei
    Yang, Weihua
    Guo, Xiaofeng
    ARS COMBINATORIA, 2016, 124 : 41 - 48
  • [8] The domination number of Cartesian product of two directed paths
    Mollard, Michel
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 144 - 151
  • [9] The domination number of Cartesian product of two directed paths
    Michel Mollard
    Journal of Combinatorial Optimization, 2014, 27 : 144 - 151
  • [10] Signed 2-independence of Cartesian product of directed cycles and paths
    Wang, Haichao
    Kim, Hye Kyung
    UTILITAS MATHEMATICA, 2013, 90 : 297 - 306