Steady-State Computations Using Summation-by-Parts Operators

被引:0
作者
Magnus Svärd
Ken Mattsson
Jan Nordström
机构
[1] Uppsala University,Department of Information Technology
[2] Uppsala University,Department of Information Technology
[3] The Swedish Defence Research Agency,Division of Systems Technology, Department of Computational Physics, Department of Information Technology
[4] Uppsala University,undefined
来源
Journal of Scientific Computing | 2005年 / 24卷
关键词
High order finite differences; summation-by-parts operators; convergence to steady state; stability;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns energy stability on curvilinear grids and its impact on steady-state calulations. We have done computations for the Euler equations using fifth order summation-by-parts block and diagonal norm schemes. By imposing the boundary conditions weakly we obtain a fifth order energy-stable scheme. The calculations indicate the significance of energy stability in order to obtain convergence to steady state. Furthermore, the difference operators are improved such that faster convergence to steady state are obtained.
引用
收藏
页码:79 / 95
页数:16
相关论文
共 22 条
[1]  
Zingg D.W.(2000)Comparison of high-accuracy finite-difference methods for linear wave propagation SIAM J. Sci. Comput. 22 476-502
[2]  
Zingg D.W.(2000)Comparison of Several Spatial Discretizations for the Navier-Stokes equations J. Comput. Phys. 160 683-704
[3]  
De Rango S.(2004)On coordinate transformations for summation-by-parts operators J. Sci. Comput. 20 29-42
[4]  
Memec M.(2004)Stable and Accurate Artificial Dissipation J. Sci. Comput. 21 57-79
[5]  
Pulliam T.H.(1994)A Stable and Conservative interface treatment of Arbitrary Spatial Accuracy The stability of numerical boundary treatments for compact high-order finite-difference schemes. 108 272-295
[6]  
Svärd M.(1999)Boundary and interface conditions for high order finite difference methods applied to the Euler and Navier–Stokes equations J. Comput. Phys. 148 341-365
[7]  
Mattsson K.(1999)High-order finite difference methods multidimensional linear problems and curvilinear coordinates J. Comput. Phys. 148 621-645
[8]  
Svärd M.(2001)Summation by parts for finite difference approximations for d/dx J. Comput. Phys. 173 149-174
[9]  
Nordström J.(1994)Numerical solution of the time-domain maxwell equation using high-accuracy finite-difference methods J. Comput. Phys. 110 46-67
[10]  
Carpenter M.H.(2000)undefined SIAM J. Sci. Comput. 22 1675-1696