Inhomogeneous Yang-Mills Algebras

被引:0
作者
Roland Berger
Michel Dubois-Violette
机构
[1] LaMUSE,Faculté des Sciences et Techniques
[2] Université Paris XI,Laboratoire de Physique Théorique, UMR 8627
来源
Letters in Mathematical Physics | 2006年 / 76卷
关键词
homogeneous algebras; Koszul algebras; Yang–Mills algebra; in PBW property; 58B34; 81R60; 16E65; 08C99;
D O I
暂无
中图分类号
学科分类号
摘要
We determine all inhomogeneous Yang–Mills algebras and super Yang–Mills algebras which are Koszul. Following a recent proposal, a non-homogeneous algebra is said to be Koszul if the homogeneous part is Koszul and if the PBW property holds. In this letter, the homogeneous parts are the Yang–Mills algebra and the super Yang–Mills algebra.
引用
收藏
页码:65 / 75
页数:10
相关论文
共 11 条
  • [1] Berger R.(2001)Koszulity for nonquadratic algebras J. Algebra 239 705-734
  • [2] Berger R.(2003)Homogeneous algebras J. Algebra 261 172-185
  • [3] Dubois-Violette M.(1996)Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type J. Algebra 181 315-328
  • [4] Wambst M.(2002)Yang–Mills algebra Lett. Math. Phys. 61 149-158
  • [5] Braverman A.(2005)Graded algebras and multilinear forms C.R. Acad. Sci. Paris, Ser. I 341 719-724
  • [6] Gaitsgory D.(2002)Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-chandra homomorphism Invent. Math. 147 243-348
  • [7] Connes A.(undefined)undefined undefined undefined undefined-undefined
  • [8] Dubois-Violette M.(undefined)undefined undefined undefined undefined-undefined
  • [9] Dubois-Violette M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Etingof P.(undefined)undefined undefined undefined undefined-undefined