Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes

被引:1
|
作者
Georgia Papacharalampous
Hristos Tyralis
Demetris Koutsoyiannis
机构
[1] National Technical University of Athens,Department of Water Resources and Environmental Engineering, School of Civil Engineering
[2] Elefsina Air Base,Air Force Support Command, Hellenic Air Force
关键词
No free lunch theorem; Random forests; River discharge; Stochastic hydrology; Support vector machines; Time series;
D O I
暂无
中图分类号
学科分类号
摘要
Research within the field of hydrology often focuses on the statistical problem of comparing stochastic to machine learning (ML) forecasting methods. The performed comparisons are based on case studies, while a study providing large-scale results on the subject is missing. Herein, we compare 11 stochastic and 9 ML methods regarding their multi-step ahead forecasting properties by conducting 12 extensive computational experiments based on simulations. Each of these experiments uses 2000 time series generated by linear stationary stochastic processes. We conduct each simulation experiment twice; the first time using time series of 100 values and the second time using time series of 300 values. Additionally, we conduct a real-world experiment using 405 mean annual river discharge time series of 100 values. We quantify the forecasting performance of the methods using 18 metrics. The results indicate that stochastic and ML methods may produce equally useful forecasts.
引用
收藏
页码:481 / 514
页数:33
相关论文
共 50 条
  • [41] Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques
    Dong, Wei
    Yang, Qiang
    Fang, Xinli
    ENERGIES, 2018, 11 (08)
  • [42] Forecasting Workloads in Multi-step, Multi-route Business Processes
    Oh, Sechan
    Strong, Ray
    Chandra, Anca
    Blomberg, Jeanette
    2014 IEEE INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2014), 2014, : 355 - 361
  • [43] A stacked machine learning model for multi-step ahead prediction of lake surface water temperature
    Di Nunno, Fabio
    Zhu, Senlin
    Ptak, Mariusz
    Sojka, Mariusz
    Granata, Francesco
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 890
  • [44] Development of improved deep learning models for multi-step ahead forecasting of daily river water temperature
    Gheisari, Mehdi
    Shafi, Jana
    Kosari, Saeed
    Amanabadi, Samaneh
    Mehdizadeh, Saeid
    Fernandez Campusano, Christian
    Barzan Abdalla, Hemn
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2025, 19 (01)
  • [45] Exploring Machine Learning and Deep Learning Approaches for Multi-Step Forecasting in Municipal Solid Waste Generation
    Mudannayake, Oshan
    Rathnayake, Disni
    Herath, Jerome Dinal
    Fernando, Dinuni K. K.
    Fernando, Mgnas
    IEEE ACCESS, 2022, 10 : 122570 - 122585
  • [46] A dynamic factor machine learning method for multi-variate and multi-step-ahead forecasting
    1600, Institute of Electrical and Electronics Engineers Inc., United States (2018-January):
  • [47] A dynamic factor machine learning method for multi-variate and multi-step-ahead forecasting
    Bontempi, Gianluca
    Le Borgne, Yann-ael
    De Stefani, Jacopo
    2017 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2017, : 222 - 231
  • [48] Multi-step ahead suspended sediment load modeling using machine learning– multi-model approach
    Gebre Gelete
    Vahid Nourani
    Hüseyin Gökçekuş
    Tagesse Gichamo
    Earth Science Informatics, 2024, 17 : 633 - 654
  • [49] Multi-step Ahead Wind Power Forecasting Based on Recurrent Neural Networks
    Fu, Yiwei
    Hu, Wei
    Tang, Maolin
    Yu, Rui
    Liu, Baisi
    2018 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2018,
  • [50] Multi-Step Ahead Water Level Forecasting Using Deep Neural Networks
    Sharafkhani, Fahimeh
    Corns, Steven
    Holmes, Robert
    WATER, 2024, 16 (21)