Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy

被引:29
作者
Chui T.Y.P. [1 ,2 ]
Mo S. [1 ,2 ]
Krawitz B. [1 ,2 ]
Menon N.R. [1 ,2 ]
Choudhury N. [1 ,2 ]
Gan A. [1 ]
Razeen M. [1 ,3 ]
Shah N. [1 ]
Pinhas A. [1 ,2 ]
Rosen R.B. [1 ,2 ]
机构
[1] New York Eye and Ear Infirmary of Mount Sinai, Department of Ophthalmology, New York, NY
[2] Icahn School of Medicine at Mount Sinai, New York, NY
[3] University of Alexandria, Alexandria Faculty of Medicine, Alexandria
关键词
Adaptive optics; Blood vessels; Capillaries; Diabetic retinopathy; Fluorescein angiography; Retina; Retinal vein occlusion; Sickle cell retinopathy;
D O I
10.1186/s40942-016-0037-8
中图分类号
学科分类号
摘要
Background: Retinal microvascular imaging is an especially promising application of high resolution imaging since there are increasing options for therapeutic intervention and need for better structural and functional biomarkers to characterize ocular and systemic vascular diseases. Main body: Adaptive optics scanning light ophthalmoscopy (AOSLO) is an emerging technology for improving in vivo imaging of the human retinal microvasculature, allowing unprecedented visualization of retinal microvascular structure, measurements of blood flow velocity, and microvascular network mapping. This high resolution imaging technique shows significant potential for studying physiological and pathological conditions of the retinal microvasculature noninvasively. Conclusion: This review will briefly summarize the abilities of in vivo human retinal microvasculature imaging in healthy controls, as well as patients with diabetic retinopathy, retinal vein occlusion, and sickle cell retinopathy using AOSLO and discuss its potential contribution to scientific research and clinical applications. © 2016 Chui et al.
引用
收藏
相关论文
共 66 条
  • [1] Saari J.C., Adler's physiology of the eye clinical application, pp. 356-373, (1987)
  • [2] Chui T.Y., Zhong Z., Song H., Burns S.A., Foveal avascular zone and its relationship to foveal pit shape, Optom Vis Sci, 89, 5, pp. 602-610, (2012)
  • [3] Tam J., Martin J.A., Roorda A., Noninvasive visualization and analysis of parafoveal capillaries in humans, Invest Ophthalmol Vis Sci, 51, 3, pp. 1691-1698, (2010)
  • [4] Bedggood P., Metha A., Direct visualization and characterization of erythrocyte flow in human retinal capillaries, Biomed Opt Express, 3, 12, pp. 3264-3277, (2012)
  • [5] Kim D.Y., Fingler J., Werner J.S., Schwartz D.M., Fraser S.E., Zawadzki R.J., In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography, Biomed Opt Express, 2, 6, pp. 1504-1513, (2011)
  • [6] Zotter S., Pircher M., Torzicky T., Bonesi M., Gotzinger E., Leitgeb R.A., Et al., Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography, Opt Express, 19, 2, pp. 1217-1227, (2011)
  • [7] Makita S., Jaillon F., Yamanari M., Yasuno Y., Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging, Opt Express, 20, 3, pp. 2681-2692, (2012)
  • [8] An L., Wang R.K., In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography, Opt Express, 16, 15, pp. 11438-11452, (2008)
  • [9] Liang J., Williams D.R., Miller D.T., Supernormal vision and high-resolution retinal imaging through adaptive optics, J Opt Soc Am A Opt Image Sci Vis, 14, 11, pp. 2884-2892, (1997)
  • [10] Roorda A., Williams D.R., The arrangement of the three cone classes in the living human eye, Nature, 397, 6719, pp. 520-522, (1999)