The Second Nonlinear Mixed Jordan Triple Derivable Mapping on Factor von Neumann Algebras

被引:0
作者
Yongfeng Pang
Danli Zhang
Dong Ma
机构
[1] Xi’an University of Architecture and Technology,School of Science
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Von Neumann algebra; The second nonlinear mixed Jordan triple derivable mapping; -derivation; 47B48; 46L10; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be a factor von Neumann algebra on a complex separable Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} with dimM>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dim {\mathcal {M}}>1$$\end{document}. We proved that if Φ:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi :{\mathcal {M}}\rightarrow {\mathcal {M}}$$\end{document} is a second nonlinear mixed Jordan triple derivable mapping, that is, Φ(A∘B∙C)=Φ(A)∘B∙C+A∘Φ(B)∙C+A∘B∙Φ(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varPhi (A\circ B\bullet C)=\varPhi (A)\circ B\bullet C+A\circ \varPhi (B)\bullet C+A\circ B\bullet \varPhi (C) \end{aligned}$$\end{document}for all A,B,C∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B,C\in {\mathcal {M}}$$\end{document}, then Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is an additive ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation.
引用
收藏
页码:951 / 962
页数:11
相关论文
共 33 条
  • [1] Li C-J(2013)Nonlinear mappings preserving product Linear Algebra Appl. 438 2339-2345
  • [2] Lu F-Y(2016) on factor von Neumann algebras Linear Multilinear Algebra 64 426-439
  • [3] Fang X-C(2018)Non-linear Chin. Ann. Math. Ser. B 39 633-642
  • [4] Taghavi A(2014)-Jordan derivations on Neumann algebras J. Math. Anal. Appl. 409 180-188
  • [5] Rohi H(2015)Nonlinear maps persevering the Jordan triple J. Math. Anal. Appl. 430 830-844
  • [6] Darvish V(2016)-production on factor von Neumann algebras Linear Multilinear Algebra 64 2090-2103
  • [7] Li C-J(2009)Nonlinear maps preserving Jordan Linear Algebra Appl. 430 335-343
  • [8] Lu F-Y(2016)-products Acta Math. Sin. (English Series) 32 821-830
  • [9] Wang T(2018)Nonlinear maps preserving Jordan triple Math. Slov. 68 163-170
  • [10] Dai L-Q(2016)-products Ann. Funct. Anal. 7 496-507