On the Multiplicity of Nodal Solutions to a Singularly Perturbed Neumann Problem

被引:0
作者
Anna Maria Micheletti
Angela Pistoia
机构
[1] Università di Pisa,Dipartimento di Matematica Applicata “U. Dini”
[2] Università di Roma “La Sapienza”,Dipartimento di Metodi e Modelli Matematici
来源
Mediterranean Journal of Mathematics | 2008年 / 5卷
关键词
Primary 35B40; Secondary 35B45; Singularly perturbed Neumann problem; nodal solution; boundary peak solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{2}\Delta u + u = |u|^{p-1}\, u \,{\rm in} \, \Omega, \frac{\partial u}{\partial v}= 0\,{\rm on}\, \partial\Omega$$\end{document} where Ω is a bounded smooth domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{N}$$\end{document}, 1  <  p< + ∞ if N = 2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < p < (N + 2)/(N - 2)$$\end{document} if N ≥ 3 and ε is a parameter. We show that if the mean curvature of ∂Ω is not constant then, for ε small enough, such a problem has always a nodal solution uε with one positive peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{1}$$\end{document} and one negative peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{2}$$\end{document} on the boundary. Moreover, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{1})$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{2})$$\end{document} converge to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm max}_{\partial\Omega}H$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm min}_{\partial\Omega}H$$\end{document}, respectively, as ε goes to zero. Here, H denotes the mean curvature of ∂Ω.
引用
收藏
页码:285 / 294
页数:9
相关论文
共 50 条
[31]   Multiple clustered layer solutions for semilinear Neumann problems on a ball [J].
Malchiodi, A ;
Ni, WM ;
Wei, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02) :143-163
[32]   Localized nodal solutions for system of critical Choquard equations [J].
Liu, Xiangqing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
[33]   Bifurcation of nodal solutions for the Moore–Nehari differential equation [J].
Ryuji Kajikiya .
Nonlinear Differential Equations and Applications NoDEA, 2023, 30
[34]   Positive and nodal solutions for an elliptic equation with critical growth [J].
Furtado, Marcelo F. ;
Souza, Bruno N. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
[35]   NODAL SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATIONS WITH DECAYING POTENTIAL [J].
Guo, Zuji .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) :1125-1138
[36]   CONCENTRATION OF NODAL SOLUTIONS FOR SEMICLASSICAL QUADRATIC CHOQUARD EQUATIONS [J].
Yang, Lu ;
Liu, Xiangqing ;
Zhou, Jianwen .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (75) :1-20
[37]   Arbitrarily small nodal solutions for nonhomogeneous Robin problems [J].
Zeng, Shengda ;
Papageorgiou, Nikolaos S. .
ASYMPTOTIC ANALYSIS, 2022, 128 (04) :539-553
[38]   Nodal solutions for a Paneitz-Branson type equation [J].
Azaiz, Seid ;
Boughazi, Hichem .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 72
[39]   Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations [J].
Liu, Fang ;
Luo, Hua ;
Dai, Guowei .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (29) :1-13
[40]   Ground state and nodal solutions for a class of double phase problems [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 71 (01)