On the Multiplicity of Nodal Solutions to a Singularly Perturbed Neumann Problem

被引:0
作者
Anna Maria Micheletti
Angela Pistoia
机构
[1] Università di Pisa,Dipartimento di Matematica Applicata “U. Dini”
[2] Università di Roma “La Sapienza”,Dipartimento di Metodi e Modelli Matematici
来源
Mediterranean Journal of Mathematics | 2008年 / 5卷
关键词
Primary 35B40; Secondary 35B45; Singularly perturbed Neumann problem; nodal solution; boundary peak solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{2}\Delta u + u = |u|^{p-1}\, u \,{\rm in} \, \Omega, \frac{\partial u}{\partial v}= 0\,{\rm on}\, \partial\Omega$$\end{document} where Ω is a bounded smooth domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{N}$$\end{document}, 1  <  p< + ∞ if N = 2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < p < (N + 2)/(N - 2)$$\end{document} if N ≥ 3 and ε is a parameter. We show that if the mean curvature of ∂Ω is not constant then, for ε small enough, such a problem has always a nodal solution uε with one positive peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{1}$$\end{document} and one negative peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{2}$$\end{document} on the boundary. Moreover, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{1})$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{2})$$\end{document} converge to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm max}_{\partial\Omega}H$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm min}_{\partial\Omega}H$$\end{document}, respectively, as ε goes to zero. Here, H denotes the mean curvature of ∂Ω.
引用
收藏
页码:285 / 294
页数:9
相关论文
共 50 条
[21]   Double- and single-layered sign-changing solutions to a singularly perturbed elliptic equation concentrating at a single sphere [J].
Clapp, Monica ;
Bhusan Manna, Bhakti .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) :474-490
[22]   SUPERCRITICAL ELLIPTIC PROBLEMS ON THE ROUND SPHERE AND NODAL SOLUTIONS TO THE YAMABE PROBLEM IN PROJECTIVE SPACES [J].
Carlos Fernandez, Juan ;
Palmas, Oscar ;
Petean, Jimmy .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) :2495-2514
[23]   MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEMS WITH EXPONENTIAL CRITICAL GROWTH IN R2 [J].
Alves, Claudianor O. ;
Pereira, Denilson S. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) :273-297
[24]   EXISTENCE AND NONEXISTENCE OF LEAST ENERGY NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEM IN R2 [J].
Alves, Claudianor O. ;
Pereira, Denilson S. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (02) :867-892
[25]   Nodal solutions of second order m-point boundary value problem with P-Laplacian [J].
Hu, Meng ;
Wang, Lili .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 41 (11) :15-22
[26]   On nodal solutions of the fractional Choquard equation [J].
Cui, Ying-Xin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
[27]   Low energy nodal solutions to the Yamabe equation [J].
Carlos Fernandez, Juan ;
Petean, Jimmy .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) :6576-6597
[28]   Nodal solutions for anisotropic (p, q)-equations [J].
Zeng, Shengda ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[29]   Existence of nodal solutions for Lidstone eigenvalue problems [J].
Xu, Ha ;
Han, XiaoLing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) :3350-3356
[30]   Nodal solutions for a weighted (N,p)-Kirchhoff-type problem with double exponential growth non-linearity [J].
Baraket, Sami ;
Chetouane, Rima ;
Dridi, Brahim ;
Jaidane, Rached ;
Mahmoudi, Fethi .
REVIEWS IN MATHEMATICAL PHYSICS, 2024,