On the Multiplicity of Nodal Solutions to a Singularly Perturbed Neumann Problem

被引:0
作者
Anna Maria Micheletti
Angela Pistoia
机构
[1] Università di Pisa,Dipartimento di Matematica Applicata “U. Dini”
[2] Università di Roma “La Sapienza”,Dipartimento di Metodi e Modelli Matematici
来源
Mediterranean Journal of Mathematics | 2008年 / 5卷
关键词
Primary 35B40; Secondary 35B45; Singularly perturbed Neumann problem; nodal solution; boundary peak solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{2}\Delta u + u = |u|^{p-1}\, u \,{\rm in} \, \Omega, \frac{\partial u}{\partial v}= 0\,{\rm on}\, \partial\Omega$$\end{document} where Ω is a bounded smooth domain in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{N}$$\end{document}, 1  <  p< + ∞ if N = 2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 < p < (N + 2)/(N - 2)$$\end{document} if N ≥ 3 and ε is a parameter. We show that if the mean curvature of ∂Ω is not constant then, for ε small enough, such a problem has always a nodal solution uε with one positive peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{1}$$\end{document} and one negative peak \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi^{\varepsilon}_{2}$$\end{document} on the boundary. Moreover, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{1})$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\xi^{\varepsilon}_{2})$$\end{document} converge to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm max}_{\partial\Omega}H$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm min}_{\partial\Omega}H$$\end{document}, respectively, as ε goes to zero. Here, H denotes the mean curvature of ∂Ω.
引用
收藏
页码:285 / 294
页数:9
相关论文
共 50 条
  • [21] Double- and single-layered sign-changing solutions to a singularly perturbed elliptic equation concentrating at a single sphere
    Clapp, Monica
    Bhusan Manna, Bhakti
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (03) : 474 - 490
  • [22] SUPERCRITICAL ELLIPTIC PROBLEMS ON THE ROUND SPHERE AND NODAL SOLUTIONS TO THE YAMABE PROBLEM IN PROJECTIVE SPACES
    Carlos Fernandez, Juan
    Palmas, Oscar
    Petean, Jimmy
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 2495 - 2514
  • [23] MULTIPLICITY OF MULTI-BUMP TYPE NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEMS WITH EXPONENTIAL CRITICAL GROWTH IN R2
    Alves, Claudianor O.
    Pereira, Denilson S.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (02) : 273 - 297
  • [24] EXISTENCE AND NONEXISTENCE OF LEAST ENERGY NODAL SOLUTIONS FOR A CLASS OF ELLIPTIC PROBLEM IN R2
    Alves, Claudianor O.
    Pereira, Denilson S.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (02) : 867 - 892
  • [25] Nodal solutions of second order m-point boundary value problem with P-Laplacian
    Hu, Meng
    Wang, Lili
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 41 (11): : 15 - 22
  • [26] On nodal solutions of the fractional Choquard equation
    Cui, Ying-Xin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [27] Low energy nodal solutions to the Yamabe equation
    Carlos Fernandez, Juan
    Petean, Jimmy
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 6576 - 6597
  • [28] Nodal solutions for anisotropic (p, q)-equations
    Zeng, Shengda
    Papageorgiou, Nikolaos S.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [29] Existence of nodal solutions for Lidstone eigenvalue problems
    Xu, Ha
    Han, XiaoLing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (12) : 3350 - 3356
  • [30] Nodal solutions for a weighted (N,p)-Kirchhoff-type problem with double exponential growth non-linearity
    Baraket, Sami
    Chetouane, Rima
    Dridi, Brahim
    Jaidane, Rached
    Mahmoudi, Fethi
    REVIEWS IN MATHEMATICAL PHYSICS, 2024,