A generalization of metric, normed, and unitary spaces

被引:0
|
作者
A. A. Borubaev
机构
[1] Kyrgyz National University,
来源
Doklady Mathematics | 2014年 / 89卷
关键词
Banach Space; Normed Space; Quotient Space; Topological Vector Space; General Topology;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:154 / 156
页数:2
相关论文
共 50 条
  • [21] On an Orthogonality Equation in Normed Spaces
    P. Wójcik
    Functional Analysis and Its Applications, 2018, 52 : 224 - 227
  • [22] On Bisectors in Minkowski Normed Spaces
    Á. G. Horváth
    Acta Mathematica Hungarica, 2000, 89 : 233 - 246
  • [23] Saturating constructions for normed spaces
    S. J. Szarek
    N. Tomczak-Jaegermann
    Geometric & Functional Analysis GAFA, 2004, 14 : 1352 - 1375
  • [24] On bisectors in Minkowski normed spaces
    Horváth, AG
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) : 233 - 246
  • [25] Multi-normed spaces
    Dales, H. G.
    Polyakov, M. E.
    DISSERTATIONES MATHEMATICAE, 2012, (488) : 6 - 157
  • [26] OPTIMAL BUNDLES IN NORMED SPACES
    Cuenya, H. H.
    Levis, F. E.
    Rodriguez, C. N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 87 - 96
  • [27] On an Orthogonality Equation in Normed Spaces
    Wojcik, P.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2018, 52 (03) : 224 - 227
  • [28] Some Ramsey type theorems for normed and quasinormed spaces
    Henson, CW
    Kalton, NJ
    Peck, NT
    Terescak, I
    Zlatos, P
    STUDIA MATHEMATICA, 1997, 124 (01) : 81 - 100
  • [29] Zone diagrams in Euclidean spaces and in other normed spaces
    Kawamura, Akitoshi
    Matousek, Jiri
    Tokuyama, Takeshi
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1201 - 1221
  • [30] Zone diagrams in Euclidean spaces and in other normed spaces
    Akitoshi Kawamura
    Jiří Matoušek
    Takeshi Tokuyama
    Mathematische Annalen, 2012, 354 : 1201 - 1221