RDELA—a Delaunay-triangulation-based, location and covariance estimator with high breakdown point

被引:0
作者
Steffen Liebscher
Thomas Kirschstein
Claudia Becker
机构
[1] Martin-Luther-University,
来源
Statistics and Computing | 2013年 / 23卷
关键词
Breakdown point; Delaunay triangulation; Minimum covariance determinant; Robust estimation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an approach that utilizes the Delaunay triangulation to identify a robust/outlier-free subsample. Given that the data structure of the non-outlying points is convex (e.g. of elliptical shape), this subsample can then be used to give a robust estimation of location and scatter (by applying the classical mean and covariance). The estimators derived from our approach are shown to have a high breakdown point. In addition, we provide a diagnostic plot to expand the initial subset in a data-driven way, further increasing the estimators’ efficiency.
引用
收藏
页码:677 / 688
页数:11
相关论文
共 53 条
[21]  
Gather U.(2002)Small sample corrections for LTS and MCD Metrika 55 111-466
[22]  
Delaunay B.(2009)Finding an unknown number of multivariate outliers J. R. Stat. Soc., Ser. B, Stat. Methodol. 71 447-1345
[23]  
Gnanadesikan R.(1996)Robustness properties of S-estimators of multivariate location and shape in high dimension Ann. Stat. 24 1327-42
[24]  
Kettenring J.R.(1993)Computation of robust estimators of multivariate location and shape Stat. Neerl. 47 27-297
[25]  
Gower J.(1985)Multivariate estimation with high breakdown point Math. Stat. Appl. 8 283-223
[26]  
Gower J.C.(1999)A fast algorithm for the minimum covariance determinant estimator Technometrics 41 212-385
[27]  
Hubert M.(1997)A comparison of sequential Delaunay triangulation algorithms Comput. Geom. 7 361-251
[28]  
Rousseeuw P.(1987)A distribution-free m-estimator of multivariate scatter Ann. Stat. 15 234-undefined
[29]  
Aelst S.(undefined)undefined undefined undefined undefined-undefined
[30]  
Liebscher S.(undefined)undefined undefined undefined undefined-undefined