RDELA—a Delaunay-triangulation-based, location and covariance estimator with high breakdown point

被引:0
作者
Steffen Liebscher
Thomas Kirschstein
Claudia Becker
机构
[1] Martin-Luther-University,
来源
Statistics and Computing | 2013年 / 23卷
关键词
Breakdown point; Delaunay triangulation; Minimum covariance determinant; Robust estimation;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an approach that utilizes the Delaunay triangulation to identify a robust/outlier-free subsample. Given that the data structure of the non-outlying points is convex (e.g. of elliptical shape), this subsample can then be used to give a robust estimation of location and scatter (by applying the classical mean and covariance). The estimators derived from our approach are shown to have a high breakdown point. In addition, we provide a diagnostic plot to expand the initial subset in a data-driven way, further increasing the estimators’ efficiency.
引用
收藏
页码:677 / 688
页数:11
相关论文
共 53 条
[1]  
Allard D.(1997)Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation J. Am. Stat. Assoc. 92 1485-1493
[2]  
Fraley C.(2009)Propagation of outliers in multivariate data Ann. Stat. 37 311-331
[3]  
Alqallaf F.(1999)The masking breakdown point of multivariate outlier identification rules J. Am. Stat. Assoc. 94 947-955
[4]  
Van Aelst S.(2004)MVE, MCD, and MZE: a simulation study comparing convex body minimizers Allg. Stat. Arch. 88 155-162
[5]  
Yohai V.(1998)Dewall: a fast divide and conquer Delaunay triangulation algorithm in ed Comput. Aided Des. 30 333-341
[6]  
Zamar R.(2000)Principal component analysis based on robust estimators of the covariance or correlation matrix: influence functions and efficiencies Biometrika 87 603-1292
[7]  
Becker C.(1987)Asymptotic behaviour of S-estimates of multivariate location parameters and dispersion matrices Ann. Stat. 15 1269-1843
[8]  
Gather U.(1992)The asymptotics of Rousseeuw’s minimum volume ellipsoid estimator Ann. Stat. 20 1828-988
[9]  
Becker C.(2005)Breakdown and groups Ann. Stat. 33 977-1579
[10]  
Paris Scholz S.(2006)Addendum to the discussion of “breakdown and groups” Ann. Stat. 34 1577-800