On the Non-existence of Meromorphic Solutions of Certain Types of Non-linear Differential Equations

被引:0
作者
Huifang Liu
Zhiqiang Mao
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Jiangxi Science and Technology Normal University,School of Mathematics and Computer
来源
Computational Methods and Function Theory | 2019年 / 19卷
关键词
Nevanlinna theory; Differential polynomial; Non-linear differential equation; Meromorphic solution; 30D35; 34M05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study meromorphic solutions of non-linear differential equations of the form fn+Pd(f)=p1eα1(z)+p2eα2(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^n+P_d(f)=p_1e^{\alpha _1(z)}+p_2e^{\alpha _2(z)}$$\end{document}, where α1,α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1,\alpha _2$$\end{document} are polynomials of degree k(≥1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k(\ge 1)$$\end{document}, p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document}, p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_2$$\end{document} are small meromorphic functions of ezk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{z^k}$$\end{document}, Pd(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\mathrm{d}(f)$$\end{document} is a differential polynomial in f of degree d with small meromorphic functions of f as its coefficients. Some sufficient conditions on the non-existence of meromorphic solutions of such equations are provided. Our results complement some previous results.
引用
收藏
页码:383 / 399
页数:16
相关论文
共 19 条
[1]  
Clunie J(1962)On integral and meromorphic functions J. Lond. Math. Soc. 37 17-27
[2]  
Heittokangas J(2002)On meromorphic solutions of certain nonlinear differential equations Bull. Austral. Math. Soc. 66 331-343
[3]  
Korhonen R(2009)Entire solutions of some non-linear differential equations Bull. De La Soc. Des Sci. Et Des Lett. De Lódí LIX 2009 19-23
[4]  
Laine I(2011)Entire solutions of certain type of differential equations II J. Math. Anal. Appl. 375 310-319
[5]  
Laine I(2006)On the nonexistence of entire solutions of certain type of nonlinear differential equations J. Math. Anal. Appl. 320 827-835
[6]  
Yang CC(2008)On certain non-linear differential equations in complex domains Arch. Math. 91 344-353
[7]  
Li P(2013)On meromorphic solutions of certain type of non-linear differential equations Ann. Acad. Sci. Fenn. Math. 38 581-593
[8]  
Li P(1970)A generalization of a theorem of P. Montel on entire functions Proc. Am. Math. Soc. 26 332-334
[9]  
Yang CC(2001)On entire solutions of a certain type of nonlinear differential equation Bull. Austral. Math. Soc. 64 377-380
[10]  
Li BQ(2010)On analogies between nonlinear difference and differential equations Proc. Jpn. Acad. 86 10-14