Unchained polygons and the N-body problem

被引:0
|
作者
A. Chenciner
J. Féjoz
机构
[1] Université R. Diderot (Paris VII),Département de Mathématiques
[2] Observatoire de Paris,IMCCE (UMR 8028), Astronomie et Systèmes dynamiques
[3] Université P. & M. Curie (Paris VI),Institut de Mathématiques (UMR 7586)
来源
Regular and Chaotic Dynamics | 2009年 / 14卷
关键词
-body problem; relative equilibrium; Lyapunov family; symmetry; action minimization; periodic and quasiperiodic solutions; 34C25; 37G40; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini.
引用
收藏
页码:64 / 115
页数:51
相关论文
共 50 条
  • [31] Splendid isolation: local uniqueness of the centered co-circular relative equilibria in the N-body problem
    Marshall Hampton
    Celestial Mechanics and Dynamical Astronomy, 2016, 124 : 145 - 153
  • [32] KAM tori for N-body problems: a brief history
    A. Celletti
    L. Chierchia
    Celestial Mechanics and Dynamical Astronomy, 2006, 95 : 117 - 139
  • [33] N-body gravitational and contact dynamics for asteroid aggregation
    Fabio Ferrari
    Alessandro Tasora
    Pierangelo Masarati
    Michèle Lavagna
    Multibody System Dynamics, 2017, 39 : 3 - 20
  • [34] Critical points at infinity in charged N-body systems
    Hoveijn, I.
    Waalkens, H.
    Zaman, M.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2023, 34 (01): : 89 - 106
  • [35] Double choreographical solutions for n-body type problems
    V. Barutello
    S. Terracini
    Celestial Mechanics and Dynamical Astronomy, 2006, 95 : 67 - 80
  • [36] ON THE MEROMORPHIC NON-INTEGRABILITY OF SOME N-BODY PROBLEMS
    Morales-Ruiz, Juan J.
    Simon, Sergi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1225 - 1273
  • [37] N-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics
    Jaime Andrade
    Stefanella Boatto
    Thierry Combot
    Gladston Duarte
    Teresinha J. Stuchi
    Regular and Chaotic Dynamics, 2020, 25 : 78 - 110
  • [38] Circular Non-collision Orbits for a Large Class of n-Body Problems
    Pieter Tibboel
    Journal of Dynamics and Differential Equations, 2020, 32 : 205 - 217
  • [39] Minimizing configurations and Hamilton-Jacobi equations of homogeneous N-body problems
    Ezequiel Maderna
    Regular and Chaotic Dynamics, 2013, 18 : 656 - 673
  • [40] The Integral Manifolds of the N Body Problem
    Christopher K. McCord
    Journal of Dynamics and Differential Equations, 2023, 35 : 1 - 68