Unchained polygons and the N-body problem

被引:0
|
作者
A. Chenciner
J. Féjoz
机构
[1] Université R. Diderot (Paris VII),Département de Mathématiques
[2] Observatoire de Paris,IMCCE (UMR 8028), Astronomie et Systèmes dynamiques
[3] Université P. & M. Curie (Paris VI),Institut de Mathématiques (UMR 7586)
来源
Regular and Chaotic Dynamics | 2009年 / 14卷
关键词
-body problem; relative equilibrium; Lyapunov family; symmetry; action minimization; periodic and quasiperiodic solutions; 34C25; 37G40; 70F10;
D O I
暂无
中图分类号
学科分类号
摘要
We study both theoretically and numerically the Lyapunov families which bifurcate in the vertical direction from a horizontal relative equilibrium in ℝ3. As explained in [1], very symmetric relative equilibria thus give rise to some recently studied classes of periodic solutions. We discuss the possibility of continuing these families globally as action minimizers in a rotating frame where they become periodic solutions with particular symmetries. A first step is to give estimates on intervals of the frame rotation frequency over which the relative equilibrium is the sole absolute action minimizer: this is done by generalizing to an arbitrary relative equilibrium the method used in [2] by V. Batutello and S. Terracini.
引用
收藏
页码:64 / 115
页数:51
相关论文
共 50 条
  • [1] Unchained polygons and the N-body problem
    Chenciner, A.
    Fejoz, J.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01) : 64 - 115
  • [2] Symmetries in N-body problem
    Xia, Zhihong
    EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE, 2008, 1043 : 126 - 132
  • [3] The solution of the gravitational n-body problem
    Escultura, EE
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) : 5021 - 5032
  • [4] The golden ratio and super central configurations of the n-body problem
    Xie, Zhifu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (01) : 58 - 72
  • [5] Some problems on the classical n-body problem
    Alain Albouy
    Hildeberto E. Cabral
    Alan A. Santos
    Celestial Mechanics and Dynamical Astronomy, 2012, 113 : 369 - 375
  • [6] The Curved N-Body Problem: Risks and Rewards
    Florin Diacu
    The Mathematical Intelligencer, 2013, 35 : 24 - 33
  • [7] Conjugate Points in the Gravitational n-Body Problem
    Angelo B. Mingarelli
    Chiara M. F. Mingarelli
    Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 391 - 401
  • [8] Central Configurations of the Curved N-Body Problem
    Florin Diacu
    Cristina Stoica
    Shuqiang Zhu
    Journal of Nonlinear Science, 2018, 28 : 1999 - 2046
  • [9] Quantum N-body problem: Matrix structures and equations
    S. L. Yakovlev
    Theoretical and Mathematical Physics, 2014, 181 : 1317 - 1338
  • [10] Jacobi Dynamics And The N-Body Problem With Variable Masses
    C. M. Giordano
    A. R. Plastino
    Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 165 - 183