Modeling seed germination of quinoa (Chenopodium quinoa Willd.) at different temperatures and water potentials

被引:0
|
作者
Hedayatollah Karimzadeh Soureshjani
Mahmoud Bahador
Mahmoud Reza Tadayon
Ayoub Ghorbani Dehkordi
机构
[1] Ferdowsi University of Mashhad,Research Center for Plant Science
[2] Shahrekord University,Department of Agronomy
[3] Gorgan University of Agricultural Science and Natural Resources,Department of Horticulture
来源
关键词
Base water potential; Cardinal temperatures; Germination rate; Hydro time model (HT); Hydrothermal time model; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Seed germination is one of the most critical plant growth stages regulated by temperature (T) and water potential (Ψ). This experiment was conducted to quantify the seed germination response of two quinoa (Chenopodium quinoa) cultivars (Sajama and Titicaca) to T and Ψ using hydro time (HT) and hydrothermal time (HTT) models. The results showed that T, Ψ, and their interaction significantly affected the maximum germination percentage (MGP) of both cultivars. Based on the results of the segmented model fit at Ψ = 0 MPa, the minimum (Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document}), optimum (To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document}), and maximum T (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{c}}$$\end{document}) in Sajama was estimated at 6.9, 21.9 and 34.9 °C, respectively and in Titicaca were estimated 8.0, 21.8 and 33.6 °C, respectively. While using the HTT model at different T and ѱ the Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document} was estimated by 8.28 and 8.39 °C for Sajama and Titicaca, respectively, the To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} also estimated 26.96 for Sajama and 27.21 °C for Titicaca. Also, using the modified HTT model, the To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} estimated 27.46 for Sajama and 27.31 °C for Titicaca. There was an increase in hydro time constant (θH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta }_{\mathrm{H}}$$\end{document}) when T increased at supra-optimal Ts (from 17 to 70 MPa h−1) as well as when the T decreased at sub-optimal Ts (from 17 to 79 MPa h−1). Also, it was observed that change of the T from To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} to Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document} and Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{c}}$$\end{document} increased base Ψ (ψb) so that for each degree Celsius decrease of T at sub-optimal Ts, the ψb increased by 0.032 and 0.034 MPa in Sajama and Titicaca, respectively. Each degree Celsius increase of T at supra-optimal Ts also increased ψb by 0.021 MPa in Sajama and 0.020 MPa in Titicaca. Using HT and HTT to predict germination rate for the 50% of germination (GR50) revealed that they had acceptable accuracy (HT, R2 = 0.97, and = 0.99 for Sajama and Titicaca, respectively; HTT, R2 = 0.87 for Sajama and = 0.90 for Titicaca). The results of this experiment provide data for future simulating models of quinoa growth and development.
引用
收藏
相关论文
共 50 条
  • [31] The impact of germination and thermal treatments on bioactive compounds of quinoa (Chenopodium quinoa Willd.) seeds
    Dostalikova, Lucie
    Cepkova, Petra Hlasna
    Janovska, Dagmar
    Jagr, Michal
    Svoboda, Pavel
    Dvoracek, Vaclav
    Viehmannova, Iva
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (05) : 1457 - 1471
  • [32] Assessment and comparison of nutritional qualities of thirty quinoa (Chenopodium quinoa Willd.) seed varieties
    Chen, Xuan
    Zhang, Yueyue
    Cao, Beier
    Wei, Xiaonan
    Shen, Zhenguo
    Su, Nana
    FOOD CHEMISTRY-X, 2023, 19
  • [33] Accumulation of Ions in Shoot and Seed of Quinoa (Chenopodium quinoa Willd.) Under Salinity Stress
    Maleki, Parisa
    Saadat, Saeed
    Bahrami, Hossein Ali
    Rezaei, Hamed
    Esmaeelnejad, Leila
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2019, 50 (06) : 782 - 793
  • [34] SEED HETEROMORPHISM AND GERMINATION IN CHENOPODIUM QUINOA WILLD. RELATED TO CROP INTRODUCTION IN MARGINALIZED ENVIRONMENTS
    Toderich, Kristina
    Kravtsova, Tatyana
    Gasimova, Khatira
    Alizade, ValidaA
    Yakovleva, Olga
    Ozturk, Munir
    PAKISTAN JOURNAL OF BOTANY, 2023, 55 (04) : 1459 - 1475
  • [35] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Ana Carolina Sales
    Cid Naudi Silva Campos
    Jonas Pereira de Souza Junior
    Dalila Lopes da Silva
    Kamilla Silva Oliveira
    Renato de Mello Prado
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Scientific Reports, 11
  • [36] The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors
    Jacobsen, SE
    Mujica, A
    Jensen, CR
    FOOD REVIEWS INTERNATIONAL, 2003, 19 (1-2) : 99 - 109
  • [37] Quinoa (Chenopodium quinoa Willd.), a potential new crop for Pakistan
    Jacobsen, SE
    Hollington, PA
    Hussain, Z
    PROSPECTS FOR SALINE AGRICULTURE, 2002, 37 : 247 - 249
  • [38] Stability Parameters and AMMI Analysis of Quinoa (Chenopodium quinoa Willd.)
    Ali, Mohamed
    Elsadek, Ashraf
    Salem, Emad Mohamed
    EGYPTIAN JOURNAL OF AGRONOMY, 2018, 40 (01): : 59 - 74
  • [39] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Sales, Ana Carolina
    Silva Campos, Cid Naudi
    de Souza Junior, Jonas Pereira
    da Silva, Dalila Lopes
    Oliveira, Kamilla Silva
    de Mello Prado, Renato
    Ribeiro Teodoro, Larissa Pereira
    Teodoro, Paulo Eduardo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [40] Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties
    Pumacahua Ramos, Augusto
    Limaylla Guerrero, Katherine Milusca
    Romero, Javier Telis
    Lopes Filho, Jose Francisco
    REVISTA COLOMBIANA DE INVESTIGACIONES AGROINDUSTRIALES, 2016, 3 : 23 - 33