Modeling seed germination of quinoa (Chenopodium quinoa Willd.) at different temperatures and water potentials

被引:0
|
作者
Hedayatollah Karimzadeh Soureshjani
Mahmoud Bahador
Mahmoud Reza Tadayon
Ayoub Ghorbani Dehkordi
机构
[1] Ferdowsi University of Mashhad,Research Center for Plant Science
[2] Shahrekord University,Department of Agronomy
[3] Gorgan University of Agricultural Science and Natural Resources,Department of Horticulture
来源
关键词
Base water potential; Cardinal temperatures; Germination rate; Hydro time model (HT); Hydrothermal time model; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
Seed germination is one of the most critical plant growth stages regulated by temperature (T) and water potential (Ψ). This experiment was conducted to quantify the seed germination response of two quinoa (Chenopodium quinoa) cultivars (Sajama and Titicaca) to T and Ψ using hydro time (HT) and hydrothermal time (HTT) models. The results showed that T, Ψ, and their interaction significantly affected the maximum germination percentage (MGP) of both cultivars. Based on the results of the segmented model fit at Ψ = 0 MPa, the minimum (Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document}), optimum (To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document}), and maximum T (Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{c}}$$\end{document}) in Sajama was estimated at 6.9, 21.9 and 34.9 °C, respectively and in Titicaca were estimated 8.0, 21.8 and 33.6 °C, respectively. While using the HTT model at different T and ѱ the Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document} was estimated by 8.28 and 8.39 °C for Sajama and Titicaca, respectively, the To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} also estimated 26.96 for Sajama and 27.21 °C for Titicaca. Also, using the modified HTT model, the To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} estimated 27.46 for Sajama and 27.31 °C for Titicaca. There was an increase in hydro time constant (θH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta }_{\mathrm{H}}$$\end{document}) when T increased at supra-optimal Ts (from 17 to 70 MPa h−1) as well as when the T decreased at sub-optimal Ts (from 17 to 79 MPa h−1). Also, it was observed that change of the T from To\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{o}}$$\end{document} to Tb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{b}}$$\end{document} and Tc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{\mathrm{c}}$$\end{document} increased base Ψ (ψb) so that for each degree Celsius decrease of T at sub-optimal Ts, the ψb increased by 0.032 and 0.034 MPa in Sajama and Titicaca, respectively. Each degree Celsius increase of T at supra-optimal Ts also increased ψb by 0.021 MPa in Sajama and 0.020 MPa in Titicaca. Using HT and HTT to predict germination rate for the 50% of germination (GR50) revealed that they had acceptable accuracy (HT, R2 = 0.97, and = 0.99 for Sajama and Titicaca, respectively; HTT, R2 = 0.87 for Sajama and = 0.90 for Titicaca). The results of this experiment provide data for future simulating models of quinoa growth and development.
引用
收藏
相关论文
共 50 条
  • [21] Evaluation of quinoa (Chenopodium quinoa Willd.) in coeliac disease
    Zevallos, V.
    Ciclitira, P. J.
    Suligoj, T.
    Herencia, L. I.
    Ellis, H. J.
    PROCEEDINGS OF THE NUTRITION SOCIETY, 2007, 66 : 69A - 69A
  • [22] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Andrés Zurita-Silva
    Francisco Fuentes
    Pablo Zamora
    Sven-Erik Jacobsen
    Andrés R. Schwember
    Molecular Breeding, 2014, 34 : 13 - 30
  • [23] EFFECTS OF HYDRO AND HORMONAL PRIMING ON QUINOA (CHENOPODIUM QUINOA WILLD.) SEED GERMINATION UNDER SALT AND DROUGHT STRESS
    Daur, Ihsanullah
    PAKISTAN JOURNAL OF BOTANY, 2018, 50 (05) : 1669 - 1673
  • [24] Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives
    Zurita-Silva, Andres
    Fuentes, Francisco
    Zamora, Pablo
    Jacobsen, Sven-Erik
    Schwember, Andres R.
    MOLECULAR BREEDING, 2014, 34 (01) : 13 - 30
  • [25] EVALUATION OF THE ALLELOPATHIC POTENTIAL OF QUINOA (CHENOPODIUM QUINOA WILLD.)
    Bilalis, Dimitrios J.
    Travlos, Ilias S.
    Karkanis, Anestis
    Gournaki, Maria
    Katsenios, Giannis
    Hela, Dimitra
    Kakabouki, Ioanna
    ROMANIAN AGRICULTURAL RESEARCH, 2013, 30 : 359 - 364
  • [26] Sustainability of quinoa (Chenopodium quinoa Willd.) production systems
    Pinedo-Taco, Rember
    Gomez-Pando, Luz
    Julca-Otiniano, Alberto
    ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2018, 5 (15): : 399 - 409
  • [27] Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)
    Nowak, Verena
    Du, Juan
    Charrondiere, U. Ruth
    FOOD CHEMISTRY, 2016, 193 : 47 - 54
  • [28] Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)
    Jacobsen, S.-E.
    Monteros, C.
    Corcuera, L. J.
    Bravo, L. A.
    Christiansen, J. L.
    Mujica, A.
    EUROPEAN JOURNAL OF AGRONOMY, 2007, 26 (04) : 471 - 475
  • [29] The impact of germination and thermal treatments on bioactive compounds of quinoa (Chenopodium quinoa Willd.) seeds
    Lucie Dostalíková
    Petra Hlásná Čepková
    Dagmar Janovská
    Michal Jágr
    Pavel Svoboda
    Václav Dvořáček
    Iva Viehmannová
    European Food Research and Technology, 2024, 250 : 1457 - 1471
  • [30] Effects of germination and cooking on the nutritional properties of three varieties of quinoa (Chenopodium quinoa Willd.)
    Valenzuela Antezana, Ricardo Nahuel
    Mita Ticona, Giovanni
    Zapana Yucra, Franklyn Elard
    Quilla Cayllahua, David
    Miranda Alejo, Rufo
    Mita Churqui, Ulrich Jhersy
    REVISTA INVESTIGACIONES ALTOANDINAS-JOURNAL OF HIGH ANDEAN RESEARCH, 2015, 17 (02): : 169 - 172