Homological Systems in Triangulated Categories

被引:0
作者
O. Mendoza
V. Santiago
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
来源
Applied Categorical Structures | 2016年 / 24卷
关键词
Triangulated categories; Standardly stratified algebras; Exceptional sequences; Homological systems; Primary: 18E30; 18E40; Secondary: 18G25;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of homological systems Θ for triangulated categories. Homological systems generalize, on one hand, the notion of stratifying systems in module categories, and on the other hand, the notion of exceptional sequences in triangulated categories. We prove that, attached to the homological system Θ, there are two standardly stratified algebras A and B, which are derived equivalent. Furthermore, it is proved that the category F(Θ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {F}({\Theta }),$\end{document} of the Θ-filtered objects in a triangulated category T,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {T},$\end{document} admits in a very natural way a structure of an exact category, and then there are exact equivalences between the exact category F(Θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak {F}({\Theta })$\end{document} and the exact categories of the Δ-good modules associated to the standardly stratified algebras A and B. Some of the obtained results can be seen also under the light of the cotorsion pairs in the sense of Iyama-Nakaoka-Yoshino (see 6.6 and 6.7 ). We recall that cotorsion pairs are studied extensively in relation with cluster tilting categories, t-structures and co-t-structures.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 40 条
  • [1] Agoston I(1998)Stratified algebras Math. Rep. Acad. Sci. Canada 20 22-28
  • [2] Dlab V(2000)Standardly stratified algebras and tilting J. Algebra 226 144-160
  • [3] Lukács E(1980)Preprojective modules over Artin algebras J. Algebra 66 61-122
  • [4] Agoston I(2006)An explicit construction for the Happel functor. Colloquium Math., No. 1 104 141-149
  • [5] Happel D(2000)Relative homological algebra and purity in triangulated categories J. Algebra 227 268-361
  • [6] Lukács E(1982)P. Deligne. Faisceaux pervers Asterisque 100 5-171
  • [7] Unger L(2007)Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188 viii + 207-44
  • [8] Auslander M(1989)Representations of associative algebras and coherent sheaves. Izv. Akad. Nauk SSSR Ser. Mat. 53 25-11
  • [9] Smalo SO(2001)Subcategories of the derived category and cotilting complexes. Colloq. Math. 88 1-54
  • [10] Barot M(1996)Quasi-hereditary algebras revisited An. St. Univ. Ovidius Constanta 4 43-224