Estimation of the best approximation of periodic functions of two variables by an "angle" in the metric of L p

被引:0
作者
Kononovych T.O. [1 ]
机构
[1] Poltava Pedagogic University, Poltava
关键词
Periodic Function; Fourier Coefficient; Trigonometric Series;
D O I
10.1007/s11253-005-0124-8
中图分类号
学科分类号
摘要
We obtain upper bounds in terms of Fourier coefficients for the best approximation by an "angle" and for norms in the metric of L p for functions of two variables defined by trigonometric series with coefficients such that Σ k1=0 ∞ Σ k2=0 ∞ (Σ l1=0 ∞ Σ l2=0 ∞ |Δ 12a l1l2|) p (k 1+1) p-2 (k 2+1) p-2) < ∞ for a certain p, 1 < p < ∞. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1403 / 1416
页数:13
相关论文
共 12 条
[1]  
Konyushkov A.A., Best approximations by trigonometric polynomials and Fourier coefficients, Mat. Sb., 44, 1, pp. 53-84, (1958)
[2]  
Edwards R.E., Fourier Series. A Modern Introduction [Russian Translation], 2, (1985)
[3]  
Kononovych T.O., Estimate for the best approximation of periodic functions in the metric of L <sub>p</sub> , Extremal Problems in the Theory of Functions and Related Problems [in Ukrainian], pp. 83-88, (2003)
[4]  
Edwards R.E., Fourier Series. A Modern Introduction [Russian Translation], 1, (1985)
[5]  
Moricz F., On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc., 109, 2, pp. 417-425, (1990)
[6]  
Vukolova T.M., D'yachenko M.I., Estimates for norms of double trigonometric series with multiply monotone coefficients, Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 386, 7, pp. 20-28, (1994)
[7]  
Vukolova T.M., On Structural Properties of Functions Representable by Trigonometric Series in Cosines with Monotone Coefficients [in Russian], (1988)
[8]  
Zaderei P.V., On integrability conditions for multiple trigonometric series, Ukr. Mat. Zh., 44, 3, pp. 340-365, (1992)
[9]  
Bari N.K., Trigonometric Series [in Russian], (1961)
[10]  
Hardy G.H., Littlewood J.E., Polya G., Inequalities, (1934)