Self-assembly behavior of carbon nanotubes modified by amphiphilic block copolymer

被引:0
|
作者
Guojian Wang
Jiayun Yang
Yilong Wang
Yuedong Liu
机构
[1] Ministry of Education,Key Laboratory of Advanced Civil Engineering Materials
[2] Tongji University,School of Materials Science and Engineering
来源
Colloid and Polymer Science | 2010年 / 288卷
关键词
MWNTs; Modification; Amphiphilic block polymers; Self-assembly;
D O I
暂无
中图分类号
学科分类号
摘要
Block copolymers of poly(tert-butyl methyacrylate) (PtBMA) and polystyrene (PSt) were grafted onto multi-walled carbon nanotubes (MWNTs) by the reaction of azide groups at the copolymer chain end with the surface of MWNTs. After hydrolysis, PtBMA block was transformed to polymethyacrylic acid (PMAA) block, and amphiphilic diblock copolymer-modified MWNTs were finally obtained. The modified MWNTs were characterized by XPS, TGA, FTIR, and Raman, and the results showed that the amphiphilic diblock copolymers were grafted onto MWNTs by the covalent bond. The TEM and SEM observation showed that PMAA-b-PSt copolymer modified MWNTs (S2) formed self-assembly tube bundles with the size up to 20 μm in both ethanol and chloroform. However, PtBMA-b-PSt copolymer modified MWNTs (S1) only formed small-size aggregates or dispersed as single-modified MWNTs. The dispersion stability tests showed that S1 had good dispersion stability in several solvents (water, ethanol, acetone, and chloroform) even after 20 days. Due to the big-size tube bundles formed by self-assemble S2, the dispersion stability of S2 in above all solvents decreased, but it was still much better than that of pristine MWNTs.
引用
收藏
页码:1677 / 1685
页数:8
相关论文
共 50 条
  • [31] Monte Carlo Simulation of the Self-assembly of Amphiphilic Triblock Copolymer in Binary Block-Selective Solvents
    Fan Juanjuan
    Han Yuanyuan
    Jiang Wei
    ACTA CHIMICA SINICA, 2011, 69 (19) : 2341 - 2346
  • [32] Amphiphilic block copolymer with diazonium salt pendant groups: Synthesis, self-assembly and post-modification
    Zhu, Zixuan
    Pan, Xinyi
    Zhang, Wenlong
    Li, Heting
    Wang, Wei
    He, Yaning
    REACTIVE & FUNCTIONAL POLYMERS, 2022, 179
  • [33] Functional nanomaterials based on block copolymer self-assembly
    Kim, Jin Kon
    Yang, Seung Yun
    Lee, Youngmin
    Kim, Youngsuk
    PROGRESS IN POLYMER SCIENCE, 2010, 35 (11) : 1325 - 1349
  • [34] Surface patterns from block copolymer self-assembly
    Kim, Ho-Cheol
    Hinsberg, William D.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2008, 26 (06): : 1369 - 1382
  • [35] Thin film block copolymer self-assembly for nanophotonics
    Kulkarni, Ashish A.
    Doerk, Gregory S.
    NANOTECHNOLOGY, 2022, 33 (29)
  • [36] Block Copolymer Self-Assembly for Biological and Chemical Sensing
    Putranto, Achmad Fajar
    Fleury, Guillaume
    Wulandari, Chandra
    Muslihati, Atqiya
    Amrillah, Yudhistira Tirtayasri
    Yuliarto, Brian
    Kogelschatz, Martin
    Nugroho, Ferry Anggoro Ardy
    Wasisto, Hutomo Suryo
    Zelsmann, Marc
    ACS APPLIED POLYMER MATERIALS, 2024, : 14970 - 15001
  • [37] Fabrication of Nanodevices Through Block Copolymer Self-Assembly
    Hu, Xiao-Hua
    Xiong, Shisheng
    FRONTIERS IN NANOTECHNOLOGY, 2022, 4
  • [38] Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly
    Shin, Dong Ok
    Mun, Jeong Ho
    Hwang, Geon-Tae
    Yoon, Jong Moon
    Kim, Ju Young
    Yun, Je Moon
    Yang, Yong-Biao
    Oh, Youngtak
    Lee, Jeong Yong
    Shin, Jonghwa
    Lee, Keon Jae
    Park, Soojin
    Kim, Jaeup U.
    Kim, Sang Ouk
    ACS NANO, 2013, 7 (10) : 8899 - 8907
  • [39] Preparation and self-assembly of poly(ferrocenophane) block copolymer
    Tao, C
    Li, W
    Wang, JJ
    Jiang, GH
    PROGRESS IN CHEMISTRY, 2004, 16 (05) : 797 - 803
  • [40] Block Copolymer Mimetic Self-Assembly of Inorganic Nanoparticles
    Guo, Yunyong
    Harirchian-Saei, Saman
    Izumi, Celly M. S.
    Moffitt, Matthew G.
    ACS NANO, 2011, 5 (04) : 3309 - 3318