Notes on R1-ideals in partial abelian monoids

被引:0
|
作者
Gejza Jenča
机构
[1] Department of Mathematics,
[2] Faculty of Electrical Engineering and Information Technology,undefined
[3] Slovak University of Technology,undefined
[4] Ilkovičova 3,undefined
[5] 812 19 Bratislava,undefined
[6] Slovakia,undefined
[7] e-mail: jenca@kmat.elf.stuba.sk,undefined
来源
algebra universalis | 2000年 / 43卷
关键词
Key words and phrases: Partial semigroup, generalized effect algebra.;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we deal with a class of R1-ideals of cancellative positive partial abelian monoids (CPAMs). We prove that, for I being an R1-ideal of a CPAM P, P/I is a CPAM. The lattice of congruence relations associated with R1-ideals is a sublattice of the lattice of all equivalence relations. Finally, we prove that an intersection of two Riesz ideals is a Riesz ideal and that the lattice of Riesz ideals is a sublattice of the lattice of all ideals.
引用
收藏
页码:307 / 319
页数:12
相关论文
共 50 条
  • [1] Notes on R1-ideals in partial abelian monoids
    Jenca, G
    ALGEBRA UNIVERSALIS, 2000, 43 (04) : 307 - 319
  • [2] Special ideals in partial abelian monoids
    YU Zhi-jian 1 CHO Min-hyung 2 WU Jun-de 3 Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2010, (01) : 112 - 116
  • [3] Special ideals in partial abelian monoids
    YU Zhijian CHO Minhyung WU Junde Department of Mathematics Taizhou University Linhai China Department of Applied Mathematics Kumoh National Institute of Technology Kyungbuk Korea Department of Mathematics Zhejiang University Hangzhou China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2010, 25 (01) : 112 - 116
  • [4] Special ideals in partial abelian monoids
    Zhi-jian Yu
    Min-hyung Cho
    Jun-de Wu
    Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 112 - 116
  • [5] Special ideals in partial abelian monoids
    Yu Zhi-jian
    Cho Min-hyung
    Wu Jun-de
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2010, 25 (01) : 112 - 116
  • [6] Quotients of partial abelian monoids
    S. Gudder
    S. Pulmannová
    algebra universalis, 1997, 38 : 395 - 421
  • [7] Quotients of partial abelian monoids
    Gudder, S
    Pulmannova, S
    ALGEBRA UNIVERSALIS, 1997, 38 (04) : 395 - 421
  • [8] Extensions of partially ordered partial abelian monoids
    Sylvia Pulmannová
    Czechoslovak Mathematical Journal, 2006, 56 : 155 - 178
  • [9] Abelian extensions of partially ordered partial monoids
    Sylvia Pulmannová
    Elena Vinceková
    Soft Computing, 2012, 16 : 1339 - 1346
  • [10] Extensions of partially ordered partial abelian monoids
    Pulmannová, S
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (01) : 155 - 178