Higher differentiability and integrability for some nonlinear elliptic systems with growth coefficients in BMO

被引:1
作者
Moscariello, Gioconda [1 ]
Pascale, Giulio [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
关键词
35B65; 35R05; 42B25; WEAK SOLUTIONS; PARTIAL REGULARITY; SINGULAR SET; EQUATIONS; MINIMIZERS; GRADIENT; INTEGRALS; CALCULUS; MINIMA; SPACES;
D O I
10.1007/s00526-024-02685-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider local solutionsuof nonlinear elliptic systems of the type divA(x,Du)=divFin Omega subset of R-n where u:Omega -> R(N)is in a weightedW1,plocspace, with p >= 2,Fis in a weightedW1,2locspace andx -> A(x,xi)has growth coefficients in the space of functions with bounded meanoscillation. We prove higher differentiability of uin the sense that the nonlinear expression ofits gradientV mu(Du):=(mu 2+|Du|2)p-24Du, with 0<mu <= 1, is weakly differentiable with D(V mu(Du))in a weightedL2locspace. Moreover we derive some local Calder & oacute;n-estimates when the source term is not necessarily differentiable. Global estimates for a suitable Dirichlet problem are also available
引用
收藏
页数:47
相关论文
共 70 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[3]  
Adams R.A., 2003, Pure and Applied Mathematics, V140
[4]  
ALVINO A, 1977, B UNIONE MAT ITAL, V14
[5]  
ASTALA K, 1983, MICH MATH J, V30, P209
[6]   ELLIPTIC EQUATIONS WITH DEGENERATE WEIGHTS [J].
Balci, Anna K. H. ;
Diening, Lars ;
Giova, Raffaella ;
di Napoli, Antonia Passarelli .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) :2373-2412
[7]   Global maximal regularity for equations with degenerate weights  [J].
Balci, Anna Kh. ;
Byun, Sun-Sig ;
Diening, Lars ;
Lee, Ho-Sik .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 :484-530
[8]   A pointwise differential inequality and second-order regularity for nonlinear elliptic systems [J].
Balci, Anna Kh. ;
Cianchi, Andrea ;
Diening, Lars ;
Maz'ya, Vladimir .
MATHEMATISCHE ANNALEN, 2022, 383 (3-4) :1775-1824
[9]   Partial regularity for weak solutions of nonlinear elliptic systems: the subquadratic case [J].
Beck, Lisa .
MANUSCRIPTA MATHEMATICA, 2007, 123 (04) :453-491
[10]  
BENILAN P, 1975, ANN SCUOLA NORM SU S, V2, P523