Superconvergence Analysis of High-Order Rectangular Edge Elements for Time-Harmonic Maxwell’s Equations

被引:0
作者
Ming Sun
Jichun Li
Peizhen Wang
Zhimin Zhang
机构
[1] Shandong University,School of Mathematics
[2] University of Nevada,Department of Mathematical Sciences
[3] North China University of Water Resources and Electric Power,School of Mathematics and Information Science
[4] Beijing Computational Science Research Center,Department of Mathematics
[5] Wayne State University,undefined
来源
Journal of Scientific Computing | 2018年 / 75卷
关键词
High-order rectangular edge element; Superconvergence; Gauss points; Time-harmonic Maxwell’s equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, high-order rectangular edge elements are used to solve the two dimensional time-harmonic Maxwell’s equations. Superconvergence for the Nédélec interpolation at the Gauss points is proved for both the second and third order edge elements. Using this fact, we obtain the superconvergence results for the electric field E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {E}$$\end{document}, magnetic field H and curlE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$curl\mathbf {E}$$\end{document} in the discrete l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^2$$\end{document} norm when the Maxwell’s equations are solved by both elements. Extensive numerical results are presented to justify our theoretical analysis.
引用
收藏
页码:510 / 535
页数:25
相关论文
共 70 条
  • [1] Ainsworth M(2001)Hierarchic hp-edge element families for Maxwell’ equations on hybrid quadrilateral/triangular meshes Comput. Methods Appl. Mech. Eng. 190 6709-6733
  • [2] Coyle J(1996)Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations Numer. Methods Partial Differ. Equ. 12 347-392
  • [3] Babus̆ka I(2004)Asymptotically exact a posteriori error estimators, Part II: general unstructured grids SIAM J. Numer. Anal. 41 2313-2332
  • [4] Strouboulis T(2006)Discrete compactness for the hp version of rectangular edge finite elements SIAM J. Numer. Anal. 44 979-1004
  • [5] Upadhyay CS(1999)Superconvergence of mixed finite element semi-discretizations of two time-dependent problems Appl. Math. 44 43-53
  • [6] Gangaraj SK(2015)Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations SIAM J. Numer. Anal. 53 1651-1671
  • [7] Bank RE(2014)Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations SIAM J. Numer. Anal. 52 2555-2573
  • [8] Xu J(2007)Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection–diffusion problems in one space dimension Math. Comput. 76 67-96
  • [9] Boffi D(2010)Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension SIAM J. Numer. Anal. 47 4044-4072
  • [10] Costabel M(2013)Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids J. Comput. Phys. 235 14-31