A Mixed Finite Element Method for the Stokes Equations Based on a Weakly Over-Penalized Symmetric Interior Penalty Approach

被引:0
作者
Andrew T. Barker
Susanne C. Brenner
机构
[1] Louisiana State University,Department of Mathematics and Center for Computation and Technology
[2] Max Planck Institute for Dynamics of Complex Technical Systems,undefined
来源
Journal of Scientific Computing | 2014年 / 58卷
关键词
Stokes problem; Mixed finite element method; Discontinuous finite element method; Weakly over-penalized symmetric interior penalty method; Nonconforming meshes; Adaptive algorithm; Additive Schwarz preconditioners;
D O I
暂无
中图分类号
学科分类号
摘要
We present a mixed finite element method for the steady-state Stokes equations where the discrete bilinear form for the velocity is obtained by a weakly over-penalized symmetric interior penalty approach. We show that this mixed finite element method is inf-sup stable and has optimal convergence rates in both the energy norm and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2$$\end{document} norm on meshes that can contain hanging nodes. We present numerical experiments illustrating these results, explore a very simple adaptive algorithm that uses meshes with hanging nodes, and introduce a simple but scalable parallel solver for the method.
引用
收藏
页码:290 / 307
页数:17
相关论文
共 81 条
[1]  
Antonietti PF(2012)Schwarz methods for a preconditioned WOPSIP method for elliptic problems Comput. Methods. Appl. Math. 12 241-272
[2]  
Ayuso de Dios B(1990)Piecewise solenoidal vector fields and the Stokes problem SIAM J. Numer. Anal. 27 1466-1485
[3]  
Brenner SC(2011)Two-level additive Schwarz preconditioners for a weakly over-penalized symmetric interior penalty method J. Sci. Comput. 47 27-49
[4]  
Sung L-Y(2011)Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations SIAM J. Numer. Anal. 49 970-991
[5]  
Baker GA(2010)An intrinsically parallel finite element method J. Sci. Comput. 42 118-121
[6]  
Jureidini WN(2009)A posteriori error control for a weakly over-penalized symmetric interior penalty method J. Sci. Comput. 40 37-50
[7]  
Karakashian OA(2010)A weakly over-penalized symmetric interior penalty method for the biharmonic problem Electron. Trans. Numer. Anal. 37 214-238
[8]  
Barker AT(2008)A weakly over-penalized symmetric interior penalty method Electron. Trans. Numer. Anal. 30 107-127
[9]  
Brenner SC(2012)Higher order weakly over-penalized symmetric interior penalty methods J. Comput. Appl. Math. 236 2883-2894
[10]  
Park E-H(2013)A balancing domain decomposition by constraints preconditioner for a weakly over-penalized symmetric interior penalty method Numer. Linear Alg. Appl. 20 472-491