Strain gradient plasticity: energetic or dissipative?

被引:0
作者
N. A. Fleck
J. R. Willis
机构
[1] University of Cambridge,Department of Engineering
[2] University of Cambridge,Department of Applied Mathematics and Theoretical Physics
来源
Acta Mechanica Sinica | 2015年 / 31卷
关键词
Strain gradient plasticity; Boundary passivation; Incremental variational principle;
D O I
暂无
中图分类号
学科分类号
摘要
For an infinite slab of strain gradient sensitive material subjected to plane-strain tensile loading, computation established and analysis confirmed that passivation of the lateral boundaries at some stage of loading inhibits plastic deformation upon further loading. This result is not surprising in itself except that, remarkably, if the gradient terms contribute to the dissipation, the plastic deformation is switched off completely and only resumes at a clearly defined higher load, corresponding to a total strain εc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _c$$\end{document}, say. The analysis presented in this paper confirms the delay of plastic deformation following passivation and determines the exact manner in which the plastic flow resumes. The plastic strain rate is continuous at the exact point εc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _c$$\end{document} of resumption of plastic flow and, for the first small increment Δε=ε-εc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \varepsilon =\varepsilon -\varepsilon _c$$\end{document} in the imposed total strain, the corresponding increment in plastic strain, Δεp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \varepsilon ^\mathrm{p}$$\end{document}, is proportional to (Δε)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta \varepsilon )^2$$\end{document}. The constant A in the relation Δεp(0)=A(Δε)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \varepsilon ^\mathrm{p}(0) = A(\Delta \varepsilon )^2$$\end{document}, where Δεp(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \varepsilon ^\mathrm{p}(0)$$\end{document} denotes the plastic strain increment at the centre of the slab, has been determined explicitly; it depends on the hardening modulus of the material. The presence of energetic gradient terms has no effect on the value of εc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _c$$\end{document} unless the dissipative terms are absent, in which case passivation reduces the rate of plastic deformation but introduces no delay. This qualitative effect of dissipative gradient terms opens the possibility of experimental discrimination of their presence or absence. The analysis employs an incremental variational formulation that is likely to find use in other problems.
引用
收藏
页码:465 / 472
页数:7
相关论文
共 21 条
  • [1] Nye JF(1953)Some geometrical relations in dislocated crystals Acta Metall. 1 153-162
  • [2] Groma I(1997)Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations Phys. Rev. B 56 5807-5813
  • [3] Evans AG(2009)A critical assessment of strain gradient plasticity Acta Mater. 57 1675-1688
  • [4] Hutchinson JW(1998)Indentation size effects in crystalline materials: a law for strain gradient plasticity J. Mech. Phys. Solids 46 411-425
  • [5] Nix WD(2004)A unified treatment of strain gradient plasticity J. Mech. Phys. Solids 49 1379-1406
  • [6] Gao H(2000)On the plasticity of single crystals: free energy, microforces, plastic-strain gradients J. Mech. Phys. Solids 48 989-1036
  • [7] Gudmundson P(1995)Discrete dislocation plasticity: a simple planar model Model. Simul. Mater. Sci. Eng. 3 689-735
  • [8] Gurtin ME(2009)A mathematical basis for strain gradient plasticity. Part 1: scalar plastic multiplier J. Mech. Phys. Solids 57 161-177
  • [9] Van der Giessen E(2005)Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique Acta Mater. 53 4269-4279
  • [10] Needleman A(2009)A mathematical basis for strain gradient plasticity. Part 2: tensorial plastic multiplier J. Mech. Phys. Solids 57 1045-1057