Existence and uniqueness results for fractional Navier boundary value problems

被引:0
作者
Imed Bachar
Hassan Eltayeb
机构
[1] King Saud University,Mathematics Department, College of Science
来源
Advances in Difference Equations | / 2020卷
关键词
Navier fractional boundary value problems; Existence and uniqueness; Green’s function; Approximation of the solution; 34A08; 34B15; 34B18; 34B27;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence, uniqueness, and positivity for the fractional Navier boundary value problem: {Dα(Dβω)(t)=h(t,ω(t),Dβω(t)),0<t<1,ω(0)=ω(1)=Dβω(0)=Dβω(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} D^{\alpha }(D^{\beta }\omega )(t)=h(t,\omega (t),D^{\beta }\omega (t)), & 0< t< 1, \\ \omega (0)=\omega (1)=D^{\beta }\omega (0)=D^{\beta }\omega (1)=0, \end{cases}\displaystyle \end{aligned}$$ \end{document} where α,β∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha,\beta \in (1,2]$\end{document}, Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\alpha }$\end{document} and Dβ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D^{\beta }$\end{document} are the Riemann–Liouville fractional derivatives. The nonlinear real function h is supposed to be continuous on [0,1]×R×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,1]\times \mathbb{R\times R}$\end{document} and satisfy appropriate conditions. Our approach consists in reducing the problem to an operator equation and then applying known results. We provide an approximation of the solution. Our results extend those obtained in (Dang et al. in Numer. Algorithms 76(2):427–439, 2017) to the fractional setting.
引用
收藏
相关论文
共 27 条
  • [1] Dang Q.A.(2017)A novel efficient method for nonlinear boundary value problems Numer. Algorithms 76 427-439
  • [2] Long D.Q.(1986)Existence and uniqueness theorems for fourth-order boundary value problems J. Math. Anal. Appl. 116 415-426
  • [3] Ngo T.K.Q.(1997)The method of lower and upper solutions for fourth-order two-point boundary value problems J. Math. Anal. Appl. 215 415-422
  • [4] Aftabizadeh A.R.(2004)The method of lower and upper solutions for some fourth-order equations JIPAM. J. Inequal. Pure Appl. Math. 5 13-18
  • [5] Ruyun M.(2020)Solutions of boundary value problems on extended-Branciari J. Inequal. Appl. 2020 495-505
  • [6] Jihui Z.(2019)-distance Symmetry 11 undefined-undefined
  • [7] Shengmao F.(2019)Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended Adv. Differ. Equ. 421 undefined-undefined
  • [8] Bai Z.(2020)-metric space Math. Methods Appl. Sci. 311 undefined-undefined
  • [9] Ge W.(2005)Applying new fixed point theorems on fractional and ordinary differential equations J. Math. Anal. Appl. undefined undefined-undefined
  • [10] Wang Y.(undefined)On the solution of a boundary value problem associated with a fractional differential equation undefined undefined undefined-undefined