Schur convexity for two classes of symmetric functions and their applications

被引:0
作者
Mingbao Sun
Nanbo Chen
Songhua Li
Yinghui Zhang
机构
[1] Hunan Institute of Science and Technology,School of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2014年 / 35卷
关键词
Symmetric function; Schur convexity; Inequality; 05E05; 26B25; 52A40;
D O I
暂无
中图分类号
学科分类号
摘要
For x = (x1, x2, ⋯, xn) ∈ ℝ+n ∪ ℝ−n, the symmetric functions Fn(x, r) and Gn(x, r) are defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n (x,r) = F_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 + x_{i_j } }} {{x_{i_j } }}} }$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_n (x,r) = G_n (x_1 ,x_2 , \cdots ,x_n ;r) = \sum\limits_{1 \leqslant i_1 < i_2 < \cdots < i_r \leqslant n} {\prod\limits_{j = 1}^r {\frac{{1 - x_{i_j } }} {{x_{i_j } }}} } ,$$\end{document} respectively, where r = 1, 2, ⋯, n, and i1, i2, ⋯, in are positive integers. In this paper, the Schur convexity of Fn(x, r) and Gn(x, r) are discussed. As applications, by a bijective transformation of independent variable for a Schur convex function, the authors obtain Schur convexity for some other symmetric functions, which subsumes the main results in recent literature; and by use of the theory of majorization establish some inequalities. In particular, the authors derive from the results of this paper the Weierstrass inequalities and the Ky Fan’s inequality, and give a generalization of Safta’s conjecture in the n-dimensional space and others.
引用
收藏
页码:969 / 990
页数:21
相关论文
共 42 条
  • [1] Schur I(1923)Uber eine klasse von mittelbildungen mit anwendungen auf der determinantentheorie Sitzungsberichte der Berliner Mathematischen Gesellschaft 22 9-20
  • [2] Guan K(2007)Some properties of a class of symmetric functions J. Math. Anal. Appl. 336 70-80
  • [3] Shi H N(2007)Schur-convex functions related to Hadamard-type inequalities J. Math. Inequal. 1 127-136
  • [4] Stepniak C(2007)An effective characterization of Schur-convex functions with applications J. Convex Anal. 14 103-108
  • [5] Zhang X M(1998)Schur-convex functions and isoperimetric inequalities Proc. Amer. Math. Soc. 126 461-470
  • [6] Chan N N(1987)Schur-convexity for J. Math. Anal. Appl. 122 1-6
  • [7] Guan K Z(2006)-optimal designs Math. Inequal. Appl. 9 797-805
  • [8] Guan K Z(2007)The Hamy symmetric function and its generalization Math. Inequal. Appl. 10 745-753
  • [9] Guan K Z(2006)A class of symmetric functions for multiplicatively convex function Math. Inequal. Appl. 9 567-576
  • [10] Guan K Z(2011)Schur-convexity of the complete symmetric function J. Math. Anal. Appl. 376 494-505