Non-Abelian groups of order 16 and their endomorphism semigroups

被引:0
|
作者
Puusemp P. [1 ]
机构
[1] Tallinn Technical University
关键词
Finite Group; Endomorphism Semigroup;
D O I
10.1007/s10958-005-0463-x
中图分类号
学科分类号
摘要
We prove that any finite group of order 16 is determined by its endomorphism semigroup in the class of all groups. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:6098 / 6111
页数:13
相关论文
共 36 条
  • [22] ON THE GENUS OF THE COMMUTING GRAPHS OF FINITE NON-ABELIAN GROUPS
    Das, Ashish Kumar
    Nongsiang, Deiborlang
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2016, 19 : 91 - 109
  • [23] The automorphisms of endomorphism semigroups of free burnside groups
    Atabekyan, V. S.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (04) : 669 - 674
  • [24] The automorphisms of endomorphism semigroups of relatively free groups
    Atabekyan, V. S.
    Aslanyan, H. T.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (02) : 207 - 215
  • [25] Automorphism Groups and Endomorphism Semigroups of Groups B(m, n)
    V. S. Atabekyan
    Algebra and Logic, 2015, 54 : 58 - 62
  • [26] Factorizations of simple non-abelian groups by subgroups of odd indixes
    Tyutyanov, V. N.
    Tihonenko, T., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 29 - 34
  • [27] Cayley Graph for the Non-Abelian Tensor Square of Some Finite Groups
    Zulkarnain, A.
    Sarmin, N. H.
    Hassim, H. I. Mat
    Erfanian, A.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2020, 44 (06) : 867 - 873
  • [28] On the characterization of some non-abelian simple groups using codegree set
    Wang, Hongning
    Zhang, Xuning
    Zhang, Selina
    Chen, Michelle
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1336 - 1348
  • [29] Hamiltonicity of the generalized order graphs of finite abelian groups
    Chin, A. Y. M.
    Lim, M. C.
    Ong, S. H.
    ARS COMBINATORIA, 2020, 151 : 289 - 294
  • [30] Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable
    Jiang Tao Shi
    Cui Zhang
    Acta Mathematica Sinica, English Series, 2011, 27