Linkage and Codes on Complete Intersections

被引:0
作者
Johan P. Hansen
机构
[1] Aarhus University,Matematisk Institut
来源
Applicable Algebra in Engineering, Communication and Computing | 2003年 / 14卷
关键词
Minimal Distance; Complete Intersection; Evaluation Code; Koszul Complex; Cohomological Method;
D O I
暂无
中图分类号
学科分类号
摘要
This note is meant to be an introduction to cohomological methods and their use in the theory of error-correcting codes. In particular we consider evaluation codes on a complete intersection. The dimension of the code is determined by the Koszul complex for X⊂ℙ2 and a lower bound for the minimal distance is obtained through linkage. By way of example our result fits the well-known formula for the minimal distance of the Generalized Reed-Muller code.
引用
收藏
页码:175 / 185
页数:10
相关论文
共 14 条
[1]  
Auslander I.(2)Reed-Muller codes on complete intersections Ann. of Math. 68 625-462
[2]  
Auslander C.(2)New generalizations of the Reed-Muller codes. I. Primitive codes Ann. of Math. 70 395-199
[3]  
Coppo H.(8)undefined C. R. Acad. Sci. Paris Sér. I. Math. 314 613-undefined
[4]  
Duursma undefined(2001)undefined Applicable Algebra in Engineering, Communications and Computing. 11 455-undefined
[5]  
Rentería undefined(1968)undefined Zero-dimensional schemes (Ravello, 1992 205-undefined
[6]  
Tapia-Recillas undefined(2)undefined IEEE Trans. Information Theory. IT- 14 189-undefined
[7]  
Hansen undefined(1998)undefined Arithmetic, geometry and coding theory (Luminy, 1993 77-undefined
[8]  
Lachaud undefined(1974)undefined Journal of Pure and Applied Algebra. 63 181-undefined
[9]  
Lorenzini undefined(2)undefined Journal of Pure and Applied Algebra 124 227-undefined
[10]  
124 undefined(3)undefined I. Inv. Math. 26 271-undefined