Some new integral inequalities on time scales containing integration on infinite intervals

被引:0
作者
Zhaowei Meng
Bin Zheng
Chuanbao Wen
机构
[1] Shandong University of Technology,School of Science
来源
Journal of Inequalities and Applications | / 2013卷
关键词
integral inequalities; time scales; dynamic equation; quantitative properties; qualitative properties;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, some new Gronwall-Bellman type integral inequalities on time scales containing integration on infinite intervals are established. They provide new bounds for unknown functions concerned and can be used as a handy tool in the research of qualitative and quantitative properties of solutions of certain dynamic equations on time scales.
引用
收藏
相关论文
共 34 条
  • [1] Hilger S(1990)Analysis on measure chains - a unified approach to continuous and discrete calculus Results Math 18 18-56
  • [2] Bohner M(2005)Oscillation for nonlinear second order dynamic equations on a time scale J. Math. Anal. Appl 301 491-507
  • [3] Erbe L(2005)Initial value problem for first-order integro-differential equation of Volterra type on time scales Nonlinear Anal. TMA 60 429-442
  • [4] Peterson A(2006)Dynamic equations on time scales: a survey J. Comput. Appl. Math 141 1-26
  • [5] Xing Y(2008)Further generalization of some double integral inequalities and applications Acta Math. Univ. Comen 77 147-154
  • [6] Han M(2001)Improvement of some Ostrowski-Grüss type inequalities Comput. Math. Appl 42 109-114
  • [7] Zheng G(2007)The Grüss inequality on time scales Commun. Math. Anal 3 1-8
  • [8] Agarwal RP(2009)Some mean value theorems for integrals on time scales Appl. Math. Comput 213 322-328
  • [9] Bohner M(2010)Some Iyengar-type inequalities on time scales for functions whose second derivatives are bounded Appl. Math. Comput 216 3244-3251
  • [10] O’Regan D(2010)Some nonlinear dynamic inequalities on time scales and applications J. Math. Inequal 4 561-579